提高铁酸铋光催化活性的进展研究
Review on Enhancement of BiFeO3 Photocatalytic Property
DOI: 10.12677/MS.2017.72029, PDF, HTML, XML,  被引量 下载: 2,153  浏览: 3,356  国家自然科学基金支持
作者: 苗良爽, 陈 强, 李 派:湖北大学材料科学与工程学院,湖北 武汉
关键词: BiFeO3可见光光催化BiFeO3 Visible Light Photocatalytic Property
摘要: 本文从理论与实验两方面总结了近年来三种提高铁酸铋BiFeO3光催化性能的途径:调控铁酸铋晶粒尺寸和形貌、选择不同掺杂金属元素、设计不同BiFeO3基复合材料。这三种调控手段都能有效提高BiFeO3光催化活性,其中以形成复合材料体系的方法效果最为显著。
Abstract: We briefly review recent investigations on the enhancing photocatalytic performance of Bismuth ferrite BiFeO3 both experimentally and theoretically. In this review, we mainly put our focus on most recent progress in ways (control of the size and shape of BiFeO3; ions doping and designing BFO3 nanocomposites) that can improve the photocatalytic properties of BiFeO3. Among them, the most effective method is to form composite materials.
文章引用:苗良爽, 陈强, 李派. 提高铁酸铋光催化活性的进展研究[J]. 材料科学, 2017, 7(2): 224-231. https://doi.org/10.12677/MS.2017.72029

参考文献

[1] Catalan, G. and Scott, J.F. (2009) Physics and Applications of Bismuth Ferrite. Advanced Materials, 21, 2463-2485.
https://doi.org/10.1002/adma.200802849
[2] Gao, T., Chen, Z., Niu, F., Zhou, D., Huang, Q., Zhu, Y., Qin, L., Sun, X. and Huang, Y. (2015) Shape-Controlled Preparation of Bismuth Ferrite by Hydrothermal Method and Their Visible-Light Degradation Properties. Journal of Alloys and Compounds, 648, 564-570.
[3] Wang, X., Lin, Y., Ding, X. and Jiang, J. (2011) Enhanced Visible-Light-Response Photocatalytic Activity of Bismuth Ferrite Nanoparticles. Journal of Alloys and Compounds, 509, 6585-6588.
[4] Tan, G.Q., Zheng, Y.Q. and Miao, H.Y. (2012) Controllable Microwave Hydrothermal Synthesis of Bismuth Ferrites and Photocatalytic Characterization. Journal of the American Ceramic Society, 95, 280-289.
https://doi.org/10.1111/j.1551-2916.2011.04775.x
[5] Zhu, A., Zhao, Q., Li, X. and Shi, Y. (2014) BiFeO3/TiO2 Nanotube Arrays Composite Electrode: Construction, Characterization, and Enhanced Photo Electrochemical Properties. ACS Applied Materials & Interfaces, 6, 671-679.
https://doi.org/10.1021/am404774z
[6] Niu, F., Chen, D., Qin, L., Gao, T., Zhang, N., Wang, S., Chen, Z., Wang, J., Sun, X. and Huang, Y. (2015) Synthesis of Pt/BiFeO3 Heterostructured Photocatalysts for Highly Efficient Visible-Light Photocatalytic Performances. Solar Energy Materials and Solar Cells, 143, 386-396.
[7] He, J., Guo, R.Q., Fang, L., Dong, W., Zheng, F.G. and Shen, M.R. (2013) Characterization and Visible Light Photocatalytic Mechanism of Size-Controlled BiFeO3 Nanoparticles. Materials Research Bulletin, 48, 3017-3024.
[8] Li, S., Lin, Y.H., Zhang, B.P., Nan, C.W. and Wang, Y. (2009) Photocatalytic and Magnetic Behaviors Observed in Nanostructured BiFeO3 Particles. Journal of Applied Physics, 105, Article ID: 056105.
https://doi.org/10.1063/1.3080131
[9] Fei, L., Yuan, J., Hu, Y., Wu, C., Wang, J. and Wang, Y. (2011) Visible Light Responsive Perovskite BiFeO3 Pills and Rods with Dominant {111}c Facets. Crystal Growth & Design, 11, 1049-1053.
https://doi.org/10.1021/cg101144s
[10] Li, S., Lin, Y.H., Zhang B.P., Wang, Y. and Nan, C.W. (2010) Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors. The Journal of Physical Chemistry C, 114, 2903-2908.
https://doi.org/10.1021/jp910401u
[11] Huo, Y., Miao, M., Zhang, Y., Zhu, J. and Li, H. (2011) Aerosol-Spraying Preparation of a Mesoporous Hollow Spherical BiFeO3 Visible Photocatalyst with Enhanced Activity and Durability. Chemical Communications, 47, 2089- 2091.
https://doi.org/10.1039/C0CC04247A
[12] Zhang, Z.B., Wang, C.C., Zakaria, R. and Ying, J.Y. (1998) Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. The Journal of Physical Chemistry B, 102, 10871-10878.
https://doi.org/10.1021/jp982948+
[13] Amy, L., Linsebigler, G.L. and Yates, J.T. (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735-758.
https://doi.org/10.1021/cr00035a013
[14] Gao, F., Chen, X.Y., Yin, K.B., Dong, S., Ren, Z.F., Yuan, F., Yu, T., Zou, Z.G. and Liu, J.M. (2007) Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Advanced Materials, 19, 2889-2892.
https://doi.org/10.1002/adma.200602377
[15] Xue, Z., Wang, T. and Chen, B. (2015) Degradation of Tetracycline with BiFeO3 Prepared by a Simple Hydrothermal Method. Materials, 8, 6360-6378.
https://doi.org/10.3390/ma8095310
[16] Reitz, C., Suchomski, C., Weidmann, C. and Brezesinski, T. (2011) Block Copolymer-Templated BiFeO3 Nanoarchitectures Composed of Phase-Pure Crystallites Intermingled with a Continuous Mesoporosity: Effective Visible-Light Photocatalysts. Nano Research, 4, 414-424.
https://doi.org/10.1007/s12274-011-0096-y
[17] Deng, J., Banerjee, S., Mohapatra, S.K., Smith, Y.R. and Misra, M. (2011) Bismuth Iron Oxide Nanoparticles as Photocatalyst for Solar Hydrogen Generation from Water. Journal of Fundamentals of Renewable Energy and Applications, 1, 1-10.
[18] Zhang, Q., Gong, W., Wang, J., Ning, X., Wang, Z., Zhao, X., Ren, W. and Zhang, Z. (2011) Size-Dependent Magnetic, Photoabsorbing, and Photocatalytic Properties of Single-Crystalline Bi2Fe4O9 Semiconductor Nanocrystals. Journal of Physical Chemistry C, 115, 25241-25246.
https://doi.org/10.1021/jp208750n
[19] Wei, J., Li, H., Mao, S., Zhang, C., Xu, Z. and Dkhil, B. (2012) Effect of Particle Morphology on the Photocatalytic Activity of BiFeO3 Microcrystallites. Journal of Materials Science-Materials in Electronics, 23, 1869-1874.
https://doi.org/10.1007/s10854-012-0676-y
[20] Wang, W., Li, N., Chi, Y., Li, Y., Yan, W., Li, X. and Shao, C. (2013) Electrospinning of Magnetical Bismuth Ferrite Nanofibers with Photocatalytic Activity. Ceramics International, 39, 3511-3518.
[21] Yang, X., Zhang, Y., Xu, G., Wei, X., Ren, Z., Shen, G. and Han, G. (2013) Phase and Morphol-ogy Evolution of Bismuth Ferrites via Hydrothermal Reaction Route. Materials Research Bulletin, 48, 1694-1699.
[22] Liu, Y., Zuo, R. and Qi, S. (2014) Surfactant-Free Solvothermal Synthesis and Optical Characterization of Bi2Fe4O9 in Mixed H2O/EtOH Solvent. Powder Technology, 254, 30-35.
[23] Tan, T.Y., Xie, W., Zhu, G.J., Shan, J., Xu, P.F., Li, L.N. and Wang, J.W. (2015) Fabrication and Photocatalysis of BiFeO3 with Inverse Opal Structure. Journal of Porous Materials, 22, 659-663.
https://doi.org/10.1007/s10934-015-9938-4
[24] Palkar, V.R., Kundaliya, D.C. and Malik, S.K. (2003) Effect of Mn Substitution on Magnetoelectric Properties of Bismuth Ferrite System. Journal of Applied Physics, 93, 4337.
https://doi.org/10.1063/1.1558992
[25] Wang, Y. and Nan, C.W. (2006) Enhanced Ferroelectricity in Ti-Doped Multiferroic BiFeO3 Thin Films. Applied Physics Letters, 89, Article ID: 052903.
https://doi.org/10.1063/1.2222242
[26] Lin, Y.H., Jiang, Q.H., Wang, Y., Nan, C.W., Chen, L. and Yu, J. (2007) Enhancement of Ferromagnetic Properties in BiFeO3 Polycrystalline Ceramic by La Doping. Applied Physics Letters, 90, Article ID: 172507.
https://doi.org/10.1063/1.2732182
[27] Hiroshi Naganuma, J.M. and Okamura, S. (2008) Ferroelectric, Electrical and Magnetic Properties of Cr, Mn, Co, Ni, Cu Added Polycrystalline BiFeO3 Film. Applied Physics Letters, 93, Article ID: 052901.
https://doi.org/10.1063/1.2965799
[28] Soltani, T. and Entezari, M.H. (2014) Solar-Fenton Catalytic Degradation of Phenolic Compounds by Impure Bismuth Ferrite Nanoparticles Synthesized via Ultrasound. Chemical Engineering Journal, 251, 207-216.
[29] Li, Z., Shen, Y. and Yang, C. (2013) Significant Enhancement in the Visible Light Pho-tocatalytic Properties of BiFeO3-Graphene Nanohybrids. Journal of Materials Chemistry A, 1, 823-829.
https://doi.org/10.1039/C2TA00141A
[30] Feng, Y.N., Wang, H.C., Shen, Y., Lin, Y.H. and Nan, C.W. (2014) Magnetic and Photocatalytic Behaviors of Ba-Doped BiFeO3 Nanofibers. International Journal of Applied Ceramic Technology, 11, 676-680.
https://doi.org/10.1111/ijac.12205
[31] Luo, J. and Maggard, P.A. (2006) Hydrothermal Synthesis and Photo-catalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3. Advanced Materials, 18, 514-517.
https://doi.org/10.1002/adma.200500109
[32] Feng, Y.N., Wang, H.C., Shen, Y., Lin, Y.H. and Nan, C.W. (2013) Magnetic and Photocatalytic Behaviors of Ca Mn Co-Doped BiFeO3 Nanofibres. Modern Research in Catalysis, 2, 1-5.
https://doi.org/10.4236/mrc.2013.23A001
[33] Guo, R., Fang, L., Dong, W., Zheng, F.G. and Shen, M.R. (2010) Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO3 Nanoparticles. The Journal of Physical Chemistry C, 114, 21390-21396.
[34] Wonyong Choi, A.T. and Hoffmann, M.R. (1994) The Role of Metal Ion Do-pants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry C, 98, 13669-13679.
https://doi.org/10.1021/j100102a038
[35] Bhardwaj, A., Burbure, N.V., Gamalski, A. and Rohrer, G.S. (2010) Composition Dependence of the Photochemical Reduction of Ag by Ba1−xSrxTiO3. Chemistry of Materials, 22, 3527-3534.
https://doi.org/10.1021/cm100718t
[36] Wang, X., Mao, W. and Zhang, J. (2015) Facile Fabrication of Highly Efficient G-C3N4/BiFeO3 Nanocomposites with Enhanced Visible Light Photocatalytic Activities. Journal of colloid and interface science, 448, 17-23.
[37] Liu, Z., Wu, B., Yin, D., Zhu, Y. and Wang, L. (2012) Enhanced Photocatalytic Activity in Al-Substituted Bi2Fe4O9 Submicrocrystals. Journal of Materials Science, 47, 6777-6783.
https://doi.org/10.1007/s10853-012-6600-2
[38] Wang, B., Wang, S., Gong, L. and Zhou, Z. (2012) Structural, Magnetic and Photocatalytic Properties of Sr2+-Doped BiFeO3 Nanoparticles Based on an Ultrasonic Irradiation Assisted Self-Combustion Method. Ceramics International, 38, 6643-6649.
[39] Zhang, Z., Liu, H., Lin, Y., Wei, Y., Nan, C.W. and Deng, X. (2012) Influence of La Doping on Magnetic and Optical Properties of Bismuth Ferrite Nanofibers. Journal of Nanomaterials, 2012, Article ID: 238605.
https://doi.org/10.1155/2012/238605
[40] Sun. H., Liu. Y. and Zhang. Y. (2014) Synthesis of Bi2Fe4O9/Reduced Graphene Oxide Composite by One-Step Hydrothermal Method and Its High Photocatalytic Performance. Journal of Materials Science-Materials in Electronics, 25, 4212-4218.
[41] Feng, Y.N., Wang, H.C., Luo, Y.D., Shen, Y. and Lin, Y.H. (2013) Ferromagnetic and Photocatalytic Behaviors Observed in Ca-Doped BiFeO3 Nanofibres. Journal of Applied Physics, 113, Article ID: 146101.
https://doi.org/10.1063/1.4801796
[42] Wang, H.C., Lin, Y.H., Feng, Y.N. and Shen, Y. (2013) Photocatalytic Behaviors Observed in Ba and Mn Doped BiFeO3 Nanofibers. Journal of Electroceramics, 31, 271-274.
https://doi.org/10.1007/s10832-013-9818-8
[43] Wu, C., Wei, J. and Kong, F. (2013) Effect of Rare Earth Dopants on the Morphologies and Photocatalytic Activities of BiFeO3 Microcrystallites. Journal of Materials Science-Materials in Electronics, 24, 1530-1535.
https://doi.org/10.1007/s10854-012-0966-4
[44] Zaki, M.I., Ramadan, W., Katrib, A. and Rabee, A.I.M. (2014) Surface Chemical and Photocatalytic Consequences of Ca-Doping of BiFeO3 as Probed by XPS and HO2 Decomposition Studies. Applied Surface Science, 317, 929-934.
[45] Chen, Z., Wu, Y., Wang, X., Jin, W. and Zhu, C. (2015) Ferromagnetism and Enhanced Photocatalytic Activity in Nd Doped BiFeO3 Nanopowders. Journal of Materials Sci-ence-Materials in Electronics, 26, 9929-9940.
https://doi.org/10.1007/s10854-015-3669-9
[46] Reddy Vanga, P., Mangalaraja, R.V. and Ashok, M. (2015) Structural, Magnetic and Photocatalytic Properties of La and Alkaline Co-Doped BiFeO3 Nanoparticles. Materials Science in Semiconductor Processing, 40, 796-802.
[47] Sakar, M., Balakumar, S., Saravanan, P. and Bharathkumar, S. (2015) Compliments of Confinements: Substitution and Dimension Induced Magnetic Origin and Band-Bending Mediated Photocatalytic Enhancements in Bi1−xDyxFeO3 Particulate and Fiber Nanostructures. Nanoscale, 7, 10667-10679.
https://doi.org/10.1039/C5NR01079A
[48] Hu, Z.T., Liu. J. and Yan, X. (2015) Low-Temperature Synthesis of Graphene/Bi2Fe4O9 Composite for Synergistic Adsorption-Photocatalytic Degradation of Hydrophobic Pollutant under Solar Irradiation. Chemical Engineering Journal, 262, 1022-1032.
[49] Li, S., Lin, Y.H., Zhang, B.P., Li, J.F. and Nan, C.W. (2009) BiFeO3/TiO2 Core-Shell Structured Nanocomposites as Visible-Active Photocatalysts and Their Optical Response Mechanism. Journal of Applied Physics, 105, Article ID: 054310.
https://doi.org/10.1063/1.3091286
[50] Guo, R.Q., Fang, L., Dong, W., Zheng, F.G. and Shen, M.R. (2011) Magnetically Separable BiFeO3 Nanoparticles with a γ-Fe2O3 Parasitic Phase: Controlled Fabrication and Enhanced Visible-Light Photocatalytic Activity. Journal of Materials Chemistry, 21, 18645-18652.
https://doi.org/10.1039/c1jm13072b
[51] Liu, Y. and Zuo, R.Z. (2012) Tunable Morphology and Optical Absorption of Bismuth Ferrite Synthesized by Sol–Gel–Hydrothermal Method. Journal of Materials Science: Materials in Electronics, 23, 2276-2281.
https://doi.org/10.1007/S10854-012-0816-4
[52] Xian, T., Yang, H. and Di, L.J. (2015) Graphene-Assisted Enhancement of Photocatalytic Activity of Bismuth Ferrite Nanoparticles. Research on Chemical Intermediates, 41, 433-441.
https://doi.org/10.1007/s11164-013-1204-2
[53] Liu, Y., Zuo, R.Z. and Qi, S.S. (2013) Controllable Preparation of BiFeO3 Carbon Core/Shell Nanofibers with Enhanced Visible Photocatalytic Activity. Journal of Molecular Catalysis A: Chemical, 376, 1-6.
https://doi.org/10.1016/j.molcata.2013.04.005
[54] Guo, C., Ge, M., Liu, L., Gao, G., Feng, Y. and Wang, Y. (2009) Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol a Degradation. Environmental Science & Technology, 44, 419-425.
https://doi.org/10.1021/es9019854
[55] Long, M., Cai, W., Cai, J., Zhou, B., Chai, X. and Wu, Y. (2006) Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation. The Journal of Physical Chemistry B, 110, 20211-20216.
https://doi.org/10.1021/jp063441z
[56] Bessekhouad, Y., Robert, D. and Weber, J.V. (2004) Bi2S3/TiO2 and CdS/TiO2 Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 163, 569-580.
[57] Bessekhouad, Y., Robert, D. and Weber, J.V. (2005) Photocatalytic Activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 Heterojunctions. Catalysis Today, 101, 315-321.