喷嘴安装角对管道喷雾降温影响的研究
Investigation of the Influence of Nozzle Install Angles to Spay Cooling Effect in Industrial Pipe by Numerical Simulation
DOI: 10.12677/MET.2017.61001, PDF, HTML, XML, 下载: 1,591  浏览: 4,632 
作者: 陈嘉琛*, 吴伟亮:上海交通大学能源与动力工程学院,上海
关键词: 喷雾降温雾化管道喷嘴安装角CFDSpray Cooling Atomization Pipe Install Angle of the Spray Nozzle CFD
摘要: 为研究在废气管道内部的喷雾降温过程中不同的喷嘴安装角度对管道内高温废气的降温情况的影响,本文采用DDM (Dispersion Droplet Model)离散液滴模型描述喷雾液滴的运动和传质传热过程,使用实验所得的喷雾粒径数据,在CFX软件上分别对不同喷嘴安装角、不同喷雾流量的管道内部的喷雾降温过程进行了数值模拟,讨论了喷嘴安装角和流量变化对喷雾液滴的轨迹和管道内的温度分布情况造成的影响。根据模拟计算结果得到结论:当雾滴不能完全蒸发的情况下,喷嘴安装角为180˚时,管道内高温废气的降温效果最为理想。
Abstract: This paper investigates how different spray nozzle install angle influence the spray cooling effect inside an industrial exhaust pipe by numerical simulation software CFX. DDM (Dispersion Droplet Model) is applied to describe the motion and heat transfer progress of the atomized water droplet; the size and the distribution of the water particles used in calculation are given according to experiments. The particle tracks and the temperature distributions of each spray nozzle install angle with different spray mass flow are discussed basing on the simulation results. In conclusion, when the spray droplets are not completely vaporized and the nozzle install angle is 180˚, the spray cooling effect is the most satisfied.
文章引用:陈嘉琛, 吴伟亮. 喷嘴安装角对管道喷雾降温影响的研究[J]. 机械工程与技术, 2017, 6(1): 1-10. https://doi.org/10.12677/MET.2017.61001

参考文献

[1] Sazhin, S.S. (2006) Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 32, 162-214.
[2] 辛娟娟, 周致富, 辛慧, 等. 单个液滴蒸发模型中不同质量传递公式的有效性分析[J]. 化工学报, 2012(6): 1704-1708.
[3] Crowe, C.T. and Smoot, L.D. (1979) Multicomponent Conservation Equations. Pulverized-Coal Combustion and Gasification, 15-54.
[4] Burger, M., Klose, G., Rottenkolber, G., et al. (2002) A Combined Eulerian and Lagrangian Method for Prediction of Evaporating Sprays. Journal of Engineering for Gas Turbines & Power, 124.
https://doi.org/10.1115/1.1473153
[5] 何志霞, 张亮, 王谦, 王芬. 耦合喷嘴内流欧拉–拉格朗日喷雾模型研究[J]. 内燃机工程, 2016, 1(27): 72-77.
[6] Lebas, R. and Blokkeel, G. ELSA Model for Atomization: To Benefit of the Eulerian and Lagrangian Descriptions of the Liquid Phase. ICLASS-2006.
[7] 张伟, 王照亮, 徐明海. 闭式循环喷雾冷却传热特性实验研究[J]. 热能动力工程, 2012(27): 429-433.
[8] 刘期聂, 程文龙, 赵锐, 韩丰云, 范含林. 一种紧凑式喷雾冷却系统的传热特性仿真分析[J]. 航天器工程, 2010(19): 61-66.
[9] 王小芝. 崇明隧道运营累积温升及喷雾降温可行性研究[D]: [硕士学位论文]. 上海: 同济大学, 2007.
[10] 陶垚. 喷雾直接蒸发冷却过程数值模拟与实验研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2014.
[11] 吴伟亮, 陈汉平, 罗次申. 新型喷雾光学测量仪的研制[J]. 热能动力工程, 2003, 18(6): 623-626.