外泌体——临床运用的潜在靶点
Exosome—Potential Target for Clinical Application
DOI: 10.12677/OJNS.2017.51004, PDF, HTML, XML,  被引量 下载: 2,571  浏览: 7,328  国家科技经费支持
作者: 郭德镔:干细胞与免疫细胞生物医药技术国家地方联合工程实验室,云南 昆明;第三军医大学,重庆;朱向情, 潘兴华:干细胞与免疫细胞生物医药技术国家地方联合工程实验室,云南 昆明
关键词: 胞外囊泡外泌体临床应用进展液态活检Extracellular Vesicles Exosome Clinical Application of Progress The Liquid Biopsy
摘要: 外泌体(Exosome)是一种普遍存在细胞中,在细胞间通讯、疾病生物学标志和药物传递上具有潜在临床运用价值的小囊泡。本文就其在癌症、缺血-再灌注损伤、造血损伤、骨骼疾病等诊疗方面的研究进展进行简要综述。
Abstract: Exosome, a kind of utricle bubble, is present in virtually all cells, which has potential clinical ap-plication value in the communication between cells, disease biology marks and drug delivery. In this paper, we made a review of recent progress of exosome using for diagnosis and treatments of cancer, ischemia/reperfusion injury, hematopoietic injury, osteal diseases.
文章引用:郭德镔, 朱向情, 潘兴华. 外泌体——临床运用的潜在靶点[J]. 自然科学, 2017, 5(1): 24-30. https://doi.org/10.12677/OJNS.2017.51004

参考文献

[1] Minciacchi, V.R., Freeman, M.R. and Di Vizio, D. (2015) Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Seminars in Cell & Developmental Biology, 4, 155-164. https://doi.org/10.1016/j.semcdb.2015.02.010
[2] Thakur, B.K., Zhang, H., Becker, A., Matei, I., Huang, Y., Costa Silva, B., et al. (2014) Double-Stranded DNA in Exosomes: A Novel Biomarker in Cancer Detection. Cell Research, 24, 766-769. https://doi.org/10.1038/cr.2014.44
[3] Colombo, M., Raposo, G. and Théry, C. (2014) Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, 30, 255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326
[4] Dean, W.L., Lee, M.J., Cummins, T.D., Schultz, D.J. and Powell, D.W. (2009) Proteomic and Functional Characterisation of Platelet Microparticle Size Classes. Thrombosis and Haemostasis, 102, 711-718.
[5] Heijnen, H.F., Schiel, A.E., Fijnheer, R., Geuze, H.J. and Sixma, J.J. (1999) Activated Platelets Release Two Types of Membrane Vesicles: Microvesicles by Surface Shedding and Exosomes Derived from Exocytosis of Multivesicular Bodies and α-Granules. Blood, 94, 3791-3799.
[6] Aatonen, M.T., Ohman, T., Nyman, T.A., Laitinen, S., Grönholm, M. and Siljander, P.R. (2014) Isolation and Characterization of Platelet-Derived Extracellular Vesicles. Journal of Extracellular Vesicles, 3, 1108-1120.
[7] Ela, S., Mager, I., Breakefield, X.O. and Wood, M.J. (2013) Extracellular Vesicles: Biology and Emerging Therapeutic Opportunities. Nature Reviews Drug Discovery, 12, 347-357. https://doi.org/10.1038/nrd3978
[8] Lv, L.L., Cao, Y.H., Pan, M.M., Liu, H., Tang, R.N., Ma, K.L., et a1. (2014) CD2AP mRNA in Urinary Exosome as Biomarker of Kidney Disease. Clinica Chimica Acta, 428, 26-31. https://doi.org/10.1016/j.cca.2013.10.003
[9] Tetta, C., Bruno, S., Fonsato, V., Deregibus, M.C. and Camussi, G. (2011) The Role of Microvesicles in Tissue Repair. Organogenesis, 7, 105-115. https://doi.org/10.4161/org.7.2.15782
[10] Kastelowitz, N. and Yin, H. (2014) Exosomes and Microvesicles: Identification and Targeting by Particle Size and Lipid Chemical Probes. ChemBioChem, 15, 923-928. https://doi.org/10.1002/cbic.201400043
[11] Belov, L., Matic, K.J., et al. (2014) Extensive Surface Protein Profiles of Extracellular Vesicles from Cancer Cells May Provide Diagnostic Signatures from Blood Samples. Journal of Extracellular Vesicles, 15, 525-535.
[12] Sheridan, C. (2016) Exosome Cancer Diagnostic Reaches Market. Nature Biotechnology, 34, 359-360. https://doi.org/10.1038/nbt0416-359
[13] Skog, J., Würdinger, T., van Rijn, S., et al. (2008) Glioblastoma Microvesicles Transport RNA and Proteins That Promote Tumour Growth and Provide Diagnostic Biomarkers. Nature Cell Biology, 10, 1470-1476. https://doi.org/10.1038/ncb1800
[14] Melo, S.A., Luecke, L.B., Kahlert, C., et al. (2015) Glypican-1 Identifies Cancer Exosomes and Detects Early Pancreatic Cancer. Nature, 523, 177-182. https://doi.org/10.1038/nature14581
[15] Liu, J., Sun, H., Wang, X., et al. (2014) Increased Exosomal MicroRNA-21 and MicroRNA-146a Levels in the Cervicovaginal Lavage Specimens of Patients with Cervical Cancer. International Journal of Molecular Sciences, 15, 758- 773. https://doi.org/10.3390/ijms15010758
[16] Motamedinia, P., Scott, A.N., Bate, K.L., Sadeghi, N., Salazar, G., Shapiro, E., et al. (2016) Urine Exosomes for Non-Invasive Assessment of Gene Expression and Mutations of Prostate Cancer. PLoS ONE, 11, 137-142. https://doi.org/10.1371/journal.pone.0154507
[17] Ying, X., et al. (2016) Epithelial Ovarian Cancer-Secreted Exosomal miR-222-3p Induces Polarization of Tumor-Associated Macrophages. Oncotarget, 10, 632-636.
[18] Hoshino, A., Costa-Silva, B., Shen, T.L., et al. (2015) Tumour Exosome Integrins Determine Organotropic Metastasis. Nature, 527, 329-335. https://doi.org/10.1038/nature15756
[19] Lin, L.Y., Du, L.M., Cao, K., Huang, Y., Yu, P.F., et al. (2016) Tumour Cell-Derived Exosomes Endow Mesenchymal Stromal Cells with Tumour-Promotion Capabilities. Oncogene, 131-138. https://doi.org/10.1038/onc.2016.131
[20] Besse, B., et al. (2015) Dendritic Cell-Derived Exosomes as Maintenance Immunotherapy after First Line Chemotherapy in NSCLC. Oncoimmunology, 5, 1070-1080.
[21] Pucci, F., Garris, C., Lai, C.P., Newton, A., et al. (2016) SCS Macrophages Suppress Melanoma by Restricting Tumor-Derived Vesicle-B Cell Interactions. Science, 352, 242-246. https://doi.org/10.1126/science.aaf1328
[22] Pitt, J.M., Charrier, M., Viaud, S., André, F., Besse, B., Chaput, N. and Zitvogel, L. (2014) Dendritic Cell-Derived Exosomes as Immunotherapies in the Fight against Cancer. The Journal of Immunology, 193, 1006-1011. https://doi.org/10.4049/jimmunol.1400703
[23] Coultas, L., Chawengsaksophak, K. and Rossant, J. (2005) Endothelial Cells and VEGF in Vascular Development. Nature, 438, 937-945.
[24] Chade, A.R. and Stewart, N. (2013) Angiogenic Cytokines in Renovascular Disease: Do They Have Potential for Therapeutic Use? Journal of the American Society of Hypertension, 7, 180-190.
[25] Lu, R., Qu, Y., Ge, J., Zhang, L., Su, Z., Pflugfelder, S.C., et al. (2012) Transcription Factor TCF4 Maintains the Properties of Human Corneal Epithelial Stem Cells. Stem Cells, 30, 753-761.
[26] Yoo, J.K., Kim, J., Choi, S.J., Noh, H.M., Kwon, Y.D., Yoo, H., et al. (2011) Discovery and Characterization of Novel MicroRNAs during Endothelial Differentiation of Human Embryonic Stem Cells. Stem Cells and Development, 21, 2049-2057.
[27] Nagpal, N. and Kulshreshtha, R. (2014) MiR-191: An Emerging Player in Disease Biology. Frontiers in Genetics, 5, 99.
[28] Maruotti, N., Corrado, A., Neve, A. and Cantatore, F.P. (2013) Systemic Effects of Wnt Signaling. Journal of Cellular Physiology, 228, 1428-1432.
[29] Nakamura, Y., Miyaki, S., Ishitobi, H., Matsuyama, S., Nakasa, T., Kamei, N., et al. (2015) Mesenchymal-Stem-Cell-Derived Exosomes Accelerate Skeletal Muscle Regeneration. FEBS Letters, 589, 1257-1265.
[30] Khan, M., Ali, F., Mohsin, S., Akhtar, S., Mehmood, A., Choudhery, M.S., et al. (2013) Preconditioning Diabetic Mesenchymal Stem Cells with Myogenic Medium Increases Their Ability to Repair Diabetic Heart. Stem Cell Research & Therapy, 4, 58-71.
[31] Huang, L., Ma, W., Ma, Y., Feng, D., Chen, H. and Cai, B. (2015) Exosomes in Mesenchymal Stem Cells, a New Therapeutic Strategy for Cardiovascular Diseases? International Journal of Biological Sciences, 11, 238-245.
[32] Turturici, G., Tinnirello, R., Sconzo, G. and Geraci, F. (2014) Extracellular Membrane Vesicles as a Mechanism of Cell-to-Cell Communication: Advantages and Disadvantages. American Journal of Physiology Cell Physiology, 306, 621-633.
[33] De Luca, L., Trino, S., Laurenzana, I., et al. (2015) MiRNAs and piRNAs from Bone Marrow Mesenchymal Stem Cell Extracellular Vesicles Induce Cell Survival and Inhibit Cell Differentiation of Cord Blood Hematopoietic Stem Cells: A New Insight in Transplantation. Oncotarget, 6, 6676-6692.
[34] Khalyfa, A., Khalyfa, A.A., Akbarpour, M., Connes, P., Romana, M., Lapping-Carr, G., Zhang, C., Andrade, J. and Gozal, D. (2016) Extracellular Microvesicle MicroRNAs in Children with Sickle Cell Anaemia with Divergent Clinical Phenotypes. British Journal of Haematology, 7, 246-253. https://doi.org/10.1111/bjh.14104
[35] Sun, W., Zhao, C., Li, Y., Wang, L., Nie, G., et al. (2016) Osteoclast-Derived Micro-RNA-Containing Exosomes Selectively Inhibit Osteoblast Activity. Cell Discovery, 2, Article No. 16015.
[36] Qin, Y., Sun, R., Wu, C., Wang, L. and Zhang, C. (2016) Exosome: A Novel Approach to Stimulate Bone Regeneration through Regulation of Osteogenesis and Angiogenesis. International Journal of Molecular Sciences, 17, 1124- 1132. https://doi.org/10.3390/ijms17050712
[37] Zhu, H.Y., et al. (2016) Circulating Exosome Levels in the Diagnosis of Steroid-Induced Osteonecrosis of the Femoral Head. Bone & Joint Research, 5, 276-279. https://doi.org/10.1302/2046-3758.56.BJR-2015-0014.R1
[38] Lobb, R.J., et al. (2015) Optimized Exosome Isolation Protocol for Cell Culture Supernatant and Human Plasma. Journal of Extracellular Vesicles, 4, Article No. 27031. https://doi.org/10.3402/jev.v4.27031
[39] Webber, J. and Clayton, A. (2013) How Pure Are Your Vesicles? Journal of Extracellular Vesicles, 2, 151-159. https://doi.org/10.3402/jev.v2i0.19861
[40] Xu, R., Greening, D.W., Zhu, H.-J., et al. (2016) Extracellular Vesicle Isolation and Characterization: Toward Clinical Application. Journal of Clinical Investigation, 126, 1152-1163. https://doi.org/10.1172/JCI81129
[41] Charrin, S., le Naour, F., Silvie, O., Milhiet, P.E., Boucheix, C. and Rubinstein, E. (2009) Lateral Organization of Membrane Proteins: Tetraspanins Spin Their Web. Biochemical Journal, 420, 133-154. https://doi.org/10.1042/BJ20082422
[42] Janas, T., Janas, M.M., Sapoń, K. and Janas, T. (2015) Mechanisms of RNA Loading into Exosomes. FEBS Letters, 589, 1391-1398. https://doi.org/10.1016/j.febslet.2015.04.036
[43] Marzola, P., Busato, A., Bonafede, R., Bontempi, P., Scambi, I., et al. (2016) Magnetic Resonance Imaging of Ultrasmall Superparamagnetic Iron Oxide-Labeled Exosomes from Stem Cells: A New Method to Obtain Labeled Exosomes. International Journal of Nanomedicine, 11, 2481-2490. https://doi.org/10.2147/ijn.s104152