基于椭球极投影的三维船舶航线高精度绘制
High Accuracy Rendering of 3D Ship Route Using Ellipsoidal Projection
DOI: 10.12677/AAM.2017.61007, PDF, HTML, XML, 下载: 1,641  浏览: 2,060  国家自然科学基金支持
作者: 宋元铭:上海海事大学数学系,上海;周联:上海海事大学数学系,上海;中国科学技术大学数学学院,安徽 合肥;陈军:宁波工程学院理学院,浙江 宁波
关键词: 椭球极投影航线绘制电子海图三维航线Ellipsoidal Projection Route Rendering Electronic Navigational Chart 3D Route
摘要: 为解决电子海图中三维船舶航线高精度绘制问题,给出了一种基于椭球极投影的绘制方法。首先,通过建立椭球极投影,将椭球面上的点与平面上的点作一一对应。其次,将港口和船舶位置信息投影到平面上,利用Hermite插值技术,构造一条平面插值曲线。然后将该平面曲线通过椭球极逆投影,得到一条地球面曲线。最后,基于船舶航向等信息,提出了三维航线长度优化及多组航线交点求解的算法,实现了三维航线自动生成及相关计算。数值实验表明本文方法较已有方法更具真实感,精度更高。
Abstract: In order to solve the problem of 3D high accuracy rendering of ship route in electronic navigational chart, a method based on the ellipsoidal projection is presented. Firstly, the ellipsoidal projection is established, and the point on the ellipsoid is one-to-one corresponding to the point on the plane. Secondly, the port and ship position information is projected onto the plane, and a plane interpolation curve is constructed by using Hermite interpolation technique. Then using the inverse ellipsoidal projection, a curve on the earth surface is obtained. Based on the information of the ship heading, the algorithm of 3D route length optimization and multi-route intersection is presented. The automatic generation of 3D route and related calculation are realized. Finally, numerical experiments show that the method is more realistic and more accurate than the existing methods.
文章引用:宋元铭, 周联, 陈军. 基于椭球极投影的三维船舶航线高精度绘制[J]. 应用数学进展, 2017, 6(1): 54-61. http://dx.doi.org/10.12677/AAM.2017.61007

参考文献

[1] 张立华. 基于电子海图的航线自动生成理论与方法[M]. 北京: 科学出版社, 2011.
[2] 夏一行, 胡力, 周泓, 等. 电子海图应用系统中坐标变换算法的研究[J]. 工程设计学报, 2003, 10(5): 299-302.
[3] 聂皓冰, 王胜正, 胡志武, 等. 航线动态优化算法在海上搜救中的应用[J]. 上海海事大学学报, 2011, 32(4): 1-6.
[4] 吕超, 胡勤友, 向哲, 等. 中国沿海主要港口推荐航线算法及其实现[J]. 上海海事大学学报, 2015, 36(3): 20-23.
[5] 张英俊. 电子海图的数学和算法基础[M]. 大连: 大连海事大学出版社, 2001.
[6] 方雄兵. 计算机图形学中非线性投影问题的研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2012.
[7] Piegl, L.A. and Tiller, W. (2001) Parameterization for Surface Fitting in Reverse Engineering. Computer-Aided Design, 33, 593-603.
https://doi.org/10.1016/S0010-4485(00)00103-2
[8] Jüttler, B. and Wang, W.P. (2003) The Shape of Spherical Quartics. Computer Aided Geometric Design, 20, 621-636.
https://doi.org/10.1016/j.cagd.2003.07.003
[9] Alexandra, M., Konstantin, I. and Dmitry, C. (2014) Least-Squares Fitting of a Three-Dimensional Ellipsoid to Noisy Data. Applied Mathematical Sciences, 8, 7409-7421.