异养硝化–好氧反硝化细菌X3的氮形态响应
Response to Different Nitrogen Forms of Heterotrophic Nitrifying-Aerobic Denitrifying Bacteria X3
DOI: 10.12677/AMS.2016.34016, PDF, HTML, XML,  被引量 下载: 1,814  浏览: 4,960  国家自然科学基金支持
作者: 张 艳, 成 钰, 费聿涛, 李秋芬:中国水产科学研究院黄海水产研究所,山东 青岛
关键词: 异养硝化–好氧反硝化细菌有机氮无机氮氮形态响应机制Heterotrophic Nitrifying-Aerobic Denitrifying Bacteria Organic Nitrogen Inorganic Nitrogen Nitrogen Forms Response Mechanism
摘要: 异养硝化–好氧反硝化细菌的氮响应机制对研究生物脱氮技术具有重要意义。通过分析异养硝化–好氧反硝化细菌X3 (Halomonas alkaliphila)生化周期与培养液中氮形态的关系,对该菌的脱氮机制进行了研究。结果表明:1) 含混合形态氮培养液中,细菌X3在对数生长期主要进行有机氮的降解;整个周期中,氨氮先升高后降低,48 h达到最高值,亚硝酸氮先升高后降低,第4天达到最高值,硝酸氮表现为先下降,48 h后上升的变化趋势,96 h总氮去除率为17.07%;2) 仅含无机氮的培养液中,细菌X3在对数生长期主要进行氨氮和硝酸氮的降解;整个周期中,氨氮和硝酸氮持续下降,亚硝酸氮先升高后降低,24 h达到最高值,96 h总氮去除率可达51.13%。结论:细菌X3的氮降解优先顺序和最终效能皆受控于环境氮化合物形态。本研究有望为生物脱氮工程设计提供理论指导。
Abstract: For the development of biological denitrification technique, study on the response mechanism of heterotrophic nitrifying-aerobic denitrifying bacteria to nitrogen forms has great significance. Herein the relationship between the nitrogen form and the denitrification activity of Halomonas alkaliphila X3 was studied by monitoring the change of different nitrogen forms in the culture so-lution, and the results are as follows. 1) In the culture solution containing both organic nitrogen and inorganic nitrogen, Halomonas alkaliphila X3 mainly degrades organic nitrogen during the logarithmic growth period. Over the whole culture cycle, the concentration of ammonia nitrogen rises up in the first 48 h, followed by a decreasing trend; the concentration of nitrite nitrogen rises up in the first 4 d, followed by a decreasing trend; while the concentration of nitrate nitrogen de-creases in the first 48 h, followed by a decreasing trend. In total 17.07% nitrogen is removed from the culture solution after a treatment for 96 h. 2) In the culture solution containing only inorganic nitrogen, the bacteria mainly degrades ammonia nitrogen during the logarithmic growth period. Over the whole culture cycle, the concentration of ammonia and nitrate nitrogen keeps down; the concentration of nitrite nitrogen rises up in the first 24 h, followed by a decreasing trend. In total 51.13% nitrogen is removed from the culture solution after a treatment for 96 h. In conclusion, the priority and efficiency of the nitrogen degradation by Halomonas alkaliphila X3 both depend on the initial nitrogen forms in the culture solution. These outcomes are promising to help the construction of biological denitrification engineering.
文章引用:张艳, 成钰, 费聿涛, 李秋芬. 异养硝化–好氧反硝化细菌X3的氮形态响应[J]. 海洋科学前沿, 2016, 3(4): 118-126. http://dx.doi.org/10.12677/AMS.2016.34016

参考文献

[1] 丘耀文. 大亚湾营养物质变异特征[J]. 海洋学报, 2001, 23(1): 85-93.
[2] 王文强, 温琰茂, 柴士伟. 养殖水体沉积物中氮的形态、分布及环境效应[J]. 水产科学, 2004, 23(1): 29-33.
[3] Robertson, L.A. and Kuenen, J.G. (1983) Thiosphaera pantotropha gen. nov. sp. nov., a Facultatively Anaerobic, Facultatively Autotrophic Sulphur Bacterium. Microbiology, 129, 2847-2855. https://doi.org/10.1099/00221287-129-9-2847
[4] 辛玉峰, 曲晓华, 袁梦冬, 等. 一株异养硝化反硝化不动杆菌的分离鉴定及脱氮活性[J]. 微生物学报, 2011.51(12): 1646-1654.
[5] 杨小龙, 李文明, 陈燕, 等. 一株好氧反硝化菌的分离鉴定及其脱氮特性[J]. 微生物学报, 2011, 51(8): 1062-1070.
[6] 苏俊峰, 马放, 王继华, 等. 新型异养硝化细菌的硝化和反硝化特性[J]. 天津大学学报, 2007, 40(10): 1205-1208.
[7] Patureau, D., Zumstein, E., Delgenes, J.P., et al. (2000) Aerobic Denitrifiers Isolated from Diverse Natural and Managed Ecosystems. Microbial Ecology, 39, 145-152. https://doi.org/10.1007/s002480000009
[8] Kim, Y.J., Yoshizawa, M., Takenaka, S., et al. (2002) Isolation and Culture Conditions of a Klebsiella pneumoniae Strain That Can Utilize Ammonium and Nitrate Ions Simultaneously with Controlled Iron and Molybdate Ion Concentrations. Bioscience, Biotechnology, and Biochemistry, 66, 996-1001. https://doi.org/10.1271/bbb.66.996
[9] Chen, F., Xia, Q. and Ju, L.K. (2003) Aerobic denitrification of Pseudomonasaeruginosa monit ored by onl ine NAD( P)H fluorescence. Applied and Environmental Microbiology, 69, 6715-6722. https://doi.org/10.1128/AEM.69.11.6715-6722.2003
[10] Kesseru, P., Kiss, I., Bihari, Z., et al. (2003) Biological denitrificat ion in acontinuous f low pilot bioreactor containing immobilized Pseudomonasbutannovora cells . Bioresource Technology, 87, 75-80. https://doi.org/10.1016/S0960-8524(02)00209-2
[11] 杨航, 黄钧, 刘博. 异养硝化–好氧反硝化菌Paracoccus pantotrophus ATCC 35512的研究进展[J]. 应用与环境生物学报, 2008, 14(4): 585-592.
[12] 郭艳丽. 三株轻度嗜盐反硝化菌的分离鉴定和讲解特性初探[D]: [硕士学位论文]. 青岛: 青岛大学, 2009.
[13] 温东辉, 唐孝炎. 异养硝化及其在污水脱氮中的作用[J]. 环境污染与防治, 2003, 25(5): 283-285.
[14] 孙雪梅, 李秋芬, 张艳, 等. 一株海水异养硝化-好氧反硝化菌系统发育及脱氮特性[J]. 微生物学报, 2012, 52(6): 687-695.
[15] 王欢, 汪苹, 张海波. 一株戴尔福特菌的异养硝化与好氧反硝化性能研究[J]. 北京工商大学学报: 自然科学版, 2008, 26(2): 1-5.
[16] 孙英杰, 吴昊, 王亚楠. 硝化反硝化过程中N2O释放影响因素[J]. 生态环境学报, 2011, 20(2): 384-388.
[17] 李秋芬, 孙雪梅, 张艳, 等. 异养硝化–好氧反硝化菌株X3的环境适应性[J]. 渔业科学进展, 2013, 34(3): 120-125.
[18] Abou Seada, M.N.I. and Ottow, J.C.G. (1985) Effect of Increasing Oxygen Concentration on Total Denitrification and Nitrous Oxide Release from Soil by Different Bacteria. Biology and Fertility of Soils, 1, 31-38. https://doi.org/10.1007/bf00710968
[19] 陈圳, 王立刚, 王迎春, 等. 异养硝化–好氧反硝化菌的筛选及脱氮性能的实验研究[J]. 环境科学, 2009, 30(12): 3614-3618.