三氧化铀中硝酸根的拉曼光谱定量分析
Determination of NO3 in UO3 by Raman Spectroscopy
DOI: 10.12677/AAC.2016.63011, PDF, HTML, XML, 下载: 2,308  浏览: 4,874 
作者: 程 充, 朱海巧, 张倩慈:中国原子能科学研究院,放射化学研究所,北京
关键词: 拉曼光谱NO3定量内标法浸取法Raman Spectra The Quantitatively Detection of Nitrate Ion Internal Standard Method Leaching Method
摘要: 本文建立了拉曼光谱法测定乏燃料后处理三氧化铀产品硝酸根含量的分析方法。选用乙酸为浸取剂和内标,NO3在1048 cm−1处的拉曼峰与CH3COO−在2948 cm−1处的拉曼峰强度比与NO3浓度之间呈现良好的线性关系,r2 = 0.997。对于含有1 mol/L乙酸0.1 mol/L硝酸的混合溶液,6次检测的相对标准偏差不高于1.1%。在加入的乙酸量确定时,根据三氧化铀的样品量以及上述两个拉曼峰的强度比,可获得三氧化铀样品中硝酸根的含量值,方法的检出限为0.005 mol/L。该方法具有测定简单、方便快捷的优点。
Abstract: A new method via Raman spectroscopy for determination of NO3 in Uranium trioxide was de-veloped. Acetic acid was selected as the leaching agent and the internal standard, and the concen-tration of NO3 can be quantified by the Raman band of NO3 (1048 cm−1) and CH3COO− (2948 cm−1). A good linear relationship is obtained between the Raman Relative Intensity ratio of   and CH3COO− and the concentration of NO3 in the range of 0.02~1 mol/L, with the r2 = 0.997. The RSD was not more than 1.1% (n = 6) for detection of 0.1 mol/L HNO3 with 1 mol/L acetic acid. When the amount of acetic acid added was determined, the concentration of nitrate in the Uranium trioxide sample could be obtained according to the amount of sample and Raman intensity ratio of these two substances. The detection limit was 0.005 mol/L. With the advantage of simple and rapid detection, this method is applicable for in-situ detection of NO3 in Uranium trioxide samples.
文章引用:程充, 朱海巧, 张倩慈. 三氧化铀中硝酸根的拉曼光谱定量分析[J]. 分析化学进展, 2016, 6(3): 68-78. http://dx.doi.org/10.12677/AAC.2016.63011

参考文献

[1] 涂文丽, 张萍, 王红艳. 酚二磺酸法测定硝酸根离子的研究[J]. 油田化学, 1997, 14(3): 283-285.
[2] 曲秀花, 叶明亮. 双波长光度法测定水中硝酸盐[J]. 光谱实验室, 1999, 16(4): 421-424.
[3] 邬亚琼, 张丽萍, 华德梅. 麝香草酚吸光光度法测定氢氧化铈, 碳酸铈中的硝酸根[C]//第十二届全国稀土元素分析化学学术报告暨研讨会论文集(上). 北京: 中国稀土协会, 2007: 191-193.
[4] 张思潮. 麝香草酚分光光度法测定水中硝酸盐氮的方法改进[J]. 预防医学文献信息, 2002, 8(2): 206-207.
[5] 张志东, 白洪彬, 许君政, 等. 分光光度法测定二氧化铀中微量硝酸根[J]. 核化学与放射化学, 2008, 30(2): 116-119.
[6] 张慧芳, 郭探, 李权, 等. 双波长分光光度法同时测定溶液中的硝酸根和碘离子[J]. 中国无机分析化学, 2011, 1(4): 24-28.
[7] 蒋仁依, 邵维仁. 工业循环冷却水及锅炉水中F−、CL−、 、 、 、 的测定——离子色谱法 [J]. 工业水处理, 1995, 15(6): 21-24.
[8] 吕立群. 离子色谱法测定大气降水中的氟离子, 乙酸, 甲酸, 氯离子, 硝酸根和硫酸根离子[J]. 中国环境监测, 2011(5): 21-23.
[9] 邱海鸥, 帅琴. 重力分相器用于流动注射–液–液萃取–原子吸收光谱法间接测定硝酸根[J]. 分析化学, 1997, 25(1): 72-75.
[10] 臧平安. 气相分子吸收光谱法测定水中亚硝酸盐氮[J]. 中国环境监测, 1995, 11(3):3-4.
[11] 吴卓智, 莫怡玉, 吴银笑, 等. 气相分子吸收光谱法测定硝酸盐氮的改进方法[J]. 现代仪器, 2003 (5): 23-24.
[12] Hohimer, J.P. (1978) Laser-Based Analytical Monitoring in Nuclear-Fuel Processing Plants. Department of Energy, Sandia Laboratories, Livermore.
http://dx.doi.org/10.2172/6825187
[13] 邹晓艳, 吕新彪, 何谋春. 常见酸根离子浓度的激光拉曼光谱定量分析[J]. 岩矿测试, 2007, 26(1): 26-28.
[14] 吴正洁, 黄耀熊, 王成, 等. 对强荧光背景拉曼光谱定量分析的研究[J]. 光谱学与光谱分析, 2010(7): 1798-1801.
[15] Kim, J., Hwang, J., Chung, H. (2008) Comparison of Near-Infrared and Raman Spectroscopy for On-Line Monitoring of Etchant Solutions Directly through a Teflon tube. Analytica Chimica Acta, 629, 119-127.
http://dx.doi.org/10.1016/j.aca.2008.09.032
[16] Gantner, E., Steinert, D. (1990) Applications of Laser Raman Spectrometry in Process Control, Using Optical Fibers. Fresenius’ Journal of Analytical Chemistry, 338, 2-8.
http://dx.doi.org/10.1007/BF00322775
[17] 白雪, 李定明, 常志远, 等. 拉曼光谱内标法定量分析Purex有机体系中的U(VI) [J]. 核化学与放射化学, 2015, 37(3): 143-152.
[18] Vickers, T.J., Mann, C.K., Zhu, J., et al. (1991) Quantitative Resonance Raman Spectroscopy. Applied Spectroscopy Reviews, 26, 341-375.
http://dx.doi.org/10.1080/05704929108050884