熔融石英材料的色散与棱镜对的色散补偿
The Dispersion Characteristic of the Fused Quartz and the Dispersion Compensation of the Prism Pair
DOI: 10.12677/APP.2016.67019, PDF, HTML, XML, 下载: 2,793  浏览: 6,349 
作者: 彭 建 *:华北电力大学数理系,北京
关键词: 熔融石英材料色散棱镜对色散补偿Fused Quartz Material Dispersion Prism Pair Dispersion Compensation
摘要: 本文从电偶极振子模型出发,运用塞尔迈耶公式,计算出从紫外至近红外波段熔融石英材料的二阶与三阶色散值。受激发射占主导作用使激光晶体在其增益峰的长波侧表现为正的二阶色散值。采用棱镜对来获得二阶负色散是色散补偿的简单易行的方法。研究了二阶色散完全补偿时熔融石英棱镜对的设计,得到了棱镜的顶角及两棱镜顶之间距离的表达式。
Abstract: The Group Velocity Dispersion (GVD) and the Third Order Dispersion (TOD) of the fused quartz are calculated by adopting the Sellmeier-formula from the electric dipole resonance model. The stimulated radiation has dominating effect on the GVD of a laser crystal, thus a positive GVD will usually come forth when the work wavelength locates in the longer side of a Gain Mountain. For dispersion compensation, to apply a prism pair is a simple and convenient means to get negative GVD. The design of the prism pair of the fused quartz is researched, and the apex angle and the distance from an apex to another apex of prisms are expressed.
文章引用:彭建. 熔融石英材料的色散与棱镜对的色散补偿[J]. 应用物理, 2016, 6(7): 136-148. http://dx.doi.org/10.12677/APP.2016.67019

参考文献

[1] Zhao, K.H. and Zhong, X.H. (1984) Optics(2). Peking University Press, Beijing, 238-244.
[2] Zhou, B.K., Gao, Y.Z., Chen, J.H., et al. (1995) Laser Principle. National Defence Industry Press, Beijing, 94-98.
[3] Zhang, K.Q. and Li, D.J. (2001) Electromagnetic Theory for Microwaves and Optoelectronics. 2nd Edition, Publishing House of Electronics Industry, Beijing, 461-467.
[4] Malitson, I.H. (1965) Interspecimen Comparison of the Refractive Index of Fused Silica. Journal of the Optical Society of America, 55, 1205-1209. http://dx.doi.org/10.1364/JOSA.55.001205
[5] Agrawal, G.P. (2001) Nonlinear Fiber Optics. 3rd Edition, Academic Press, San Diego, 8-12.
[6] Ripin, D.J., Chudoba, C., Gopinath, J.T., et al. (2002) Generation of 20-fs Pulses by a Prismless Cr4+:YAG Laser. Optics Letters, 27, 61-63. http://dx.doi.org/10.1364/OL.27.000061
[7] Ishida, Y. and Naganuma, K. (1994) Characteristics of Fomtosecond Pulses near 1.5μm in a Self-Mode-Locked Cr4+:YAG Laser. Optics Letters, 19, 2003-2005. http://dx.doi.org/10.1364/OL.19.002003
[8] Martinez, O.E. and Fork, R.L. (1984) Theory of Passively Mode-Locked Lasers including Self-Phase Modulation and Group-Velocity Dispersion. Optics Letters, 9, 156-158. http://dx.doi.org/10.1364/OL.9.000156
[9] Kärtner, F.X., Jung, I.D. and Keller, U. (1996) Soliton Mode-Locking with Saturable Absorbers. IEEE Journal of Selected Topics in Quantum Electronics, 2, 540-556. http://dx.doi.org/10.1109/2944.571754
[10] Theimer, J., Hayduk, M., Krol, M.F., et al. (1997) Mode-Locked Cr4+:YAG Laser: Model and Experiment. Optics Communications, 142, 55-60. http://dx.doi.org/10.1016/S0030-4018(97)00261-7
[11] Fork, R.L., Martinez, O.E. and Gordon, J.P. (1984) Negative Dispersion Using Pairs of Prism. Optics Letters, 9, 150- 152. http://dx.doi.org/10.1364/OL.9.000150