双层复合管流固耦合振动的动力特性分析
Dynamic Characteristics of Fluid-Structure Interaction Vibration in Double Layer Pipe
DOI: 10.12677/IJM.2016.52006, PDF, HTML, XML, 下载: 2,043  浏览: 5,208  国家自然科学基金支持
作者: 张 烨, 刘 睫, 韩省亮:西安交通大学航天航空学院,陕西 西安
关键词: 双层复合管流固耦合固有频率行波法复合材料力学Double Layer Pipe Fluid-Structure Interaction Natural Frequency Traveling Wave Method Composite Material Mechanic
摘要: 基于复合材料力学层合板的并联和串联模型,将双层复合管等效简化为单层管,在此基础上对空管分别进行了理论计算、数值模拟和实验研究,验证了模型的有效性;对于充液复合管的流固耦合系统进行等效简化,然后应用行波法计算其固有频率,并与数值模拟和实验结果进行了对比,证实了行波法简洁且有效;最后采用行波法讨论了双层复合管中材料和尺寸的变化对结构固有频率的影响。研究结果表明,并联简化模型较适用于含有金属材料的管道,而串联模型适用于非金属材料管道;行波法计算方便快捷,宜于编程实现,且计算结果与已有成果吻合良好。
Abstract: Based on the parallel and the serial model for laminated plates of composite material mechanics, the double layer pipe is equivalent simplified as single pipe. On this basis, the respectively theo-retical calculation, numerical simulation and experiment research about the empty pipe proof the effectiveness of this model. The natural frequencies of fluid-solid coupling system of liquid filled composite pipe are calculated by using the traveling wave method, and the results are made comparison between the results of numerical simulation and experiments; they confirm the conciseness and effectiveness of the traveling wave method. Finally the influence of the material and size in double layer composite pipe on the natural frequency of the structure is discussed by the traveling wave method. The results show that the parallel simplified model is more suitable for the metal pipes while the serial model is more suitable for the metalloid pipes; the traveling wave method is clear for problem-solving, suitable for programming, and the calculation results are consistent with the existing results.
文章引用:张烨, 刘睫, 韩省亮. 双层复合管流固耦合振动的动力特性分析[J]. 力学研究, 2016, 5(2): 46-62. http://dx.doi.org/10.12677/IJM.2016.52006

参考文献

[1] Wiggert, D.C., Hatfield, F.J. and Stuckenbruck, S. (1987) Analysis of Liquid and Structural Transients in Piping by the Method of Characteristics. Transactions of the ASME Journal of Fluids Engineering, 109, 161-165.
http://dx.doi.org/10.1115/1.3242638
[2] Sreejith, B., Jayaraj, K., Ganesan, N., et al. (2004) Finite Element Analysis of Fluid-Structure Interaction in Pipeline Systems. Nuclear Engineering and Design, 227, 313-322.
http://dx.doi.org/10.1016/j.nucengdes.2003.11.005
[3] Zhang, L.X., Tijsseling, A.S. and Vardy, A.E. (1999) FSI Analysis of Liquid-Filled Pipes. Journal of Sound and Vibration, 224, 69-99.
http://dx.doi.org/10.1006/jsvi.1999.2158
[4] 焦宗夏, 华清, 于凯. 传输管道流固耦合振动的模态分析[J]. 航空学报, 1999, 20(4): 316-320.
[5] 任建亭, 姜节胜. 输流管道系统振动研究进展[J]. 力学进展, 2003, 33(3): 313-324.
[6] Beale, L.S. and Accorsi, M.L. (1995) Power Flow in Two-and-Three-Dimensional Frame Structures. Journal of Sound and Vibration, 185, 685-702.
http://dx.doi.org/10.1006/jsvi.1995.0409
[7] 顾建忠. 国外双层金属复合钢管的用途及生产方法[J]. 上海金属, 2000, 22(4): 16-24.
[8] 蒋至强, 符寒光, 杜建铭. 提高SHS复合管内衬陶瓷层性能的进展[J]. 上海金属, 2004(1): 20-25.
[9] 李淑华, 王建江, 王双喜, 等. 小口径内衬陶瓷复合钢管涂层厚度控制[J]. 材料保护, 2000(3): 28-29.
[10] Yoshikawa, S., Willams, E.G. and Washburn, K.B. (1994) Vibration of Two Concentric Submerged Cylindrical Shells Coupled by the Contained Fluid. The Journal of the Acoustical Society of America, 95, 3273-3286.
http://dx.doi.org/10.1121/1.410021
[11] 陈美霞, 骆东平, 陈小宁, 等. 有限长双层壳体声辐射理论及数值分析[J]. 中国造船, 2003, 44(4): 59-67.
[12] 张慧玲. 复合筒结构中的周向导波[D]: [博士学位论文]. 南京: 南京理工大学, 2008.
[13] 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.
[14] 倪振华. 振动力学[M]. 西安: 西安交通大学, 1984.
[15] Tijsseling, A.S., Vardy, A.E. and Fan, D. (1996) Fluid-Structure Interaction and Cavitation in a Single-Elbow Pipe System. Journal of Fluids and Structures, 10, 395-420.
http://dx.doi.org/10.1006/jfls.1996.0025
[16] 林磊. 管道流固耦合振动的行波方法研究[D]: [博士学位论文]. 西安: 西北工业大学, 2005: 15-18.