脉冲电流处理工艺参数对AZ31B镁合金的微观形貌的影响
Effect of Electric Current Parameters on the Microstructural Evolution in a AZ31B Magnesium Alloy
DOI: 10.12677/MEng.2016.31001, PDF, HTML, XML, 下载: 1,995  浏览: 5,520  国家自然科学基金支持
作者: 吴稀勇:天津东义镁制品股份有限公司,天津;吴 楠:东北大学各向异性与织构重点实验室,辽宁 沈阳;王新丽:东北大学研究院,辽宁 沈阳;戴文斌:东北大学冶金学院,辽宁 沈阳
关键词: 脉冲电流处理AZ31B镁合金微观形貌Electric Current Pulses Treatment AZ31B Magnesium Alloy Microstructure
摘要: 通过改变脉冲电压强度和脉冲作用次数,借助金相分析系统研究了脉冲电流处理工艺参数对AZ31B镁合金的微观形貌的演变规律。研究发现随着脉冲电压强度或脉冲作用次数的增加,平均晶粒尺寸均会呈现长大趋势,尤其电压强度的影响更明显。且脉冲电流处理后样品中生成大量的拉伸孪晶,这主要是由于脉冲电流作用瞬间晶粒内部热膨胀和升温不同引起的热压应力所致。
Abstract: The effect of electric current parameters, including the pulsed voltage intensity and the electric pulse repeating times on the microstructural evolution of AZ31B magnesium alloy was investigated by optical microscope method. The results showed that the grains become coarser with increasing either the pulsed voltage intensity or the repeating times. In addition, the application of electric current was beneficial to the formation of tensile twins, which could be ascribed to the thermal compressive stress formed due to the nonsynchronous between the temperature increment and the thermal expansion inter the grains during current passing.
文章引用:吴稀勇, 吴楠, 王新丽, 戴文斌. 脉冲电流处理工艺参数对AZ31B镁合金的微观形貌的影响[J]. 冶金工程, 2016, 3(1): 1-6. http://dx.doi.org/10.12677/MEng.2016.31001

参考文献

[1] Avedesian, M.M. and Baker, H., Eds. (1999) Magnesium and Magnesium Alloys, ASM Speciality Handbook. ASM International, Metals Park, OH.
[2] Conrad, H., Guo, Z. and Sprecher, A.F. (1989) Effect of an Electric Field on the Recovery and Recrystallization of Al and Cu. Scripta Metallurgica, 23, 821-824.
http://dx.doi.org/10.1016/0036-9748(89)90252-4
[3] Yang, D. and Conrad, H. (1997) Influence of an Electric Field on the Superplastic Deformation of 3Y-TZP. Scripta Materialia, 36, 1431-1435.
http://dx.doi.org/10.1016/S1359-6462(97)00045-6
[4] Lai, Z.H., Conrad, H., Chao, Y.S., Wang, S.Q. and Sun, J. (1989) Effect of Electropulsing on the Microstructure and Properties of Iron-Based Amorphous Alloys. Scripta Metal-lurgica, 23, 305-310.
http://dx.doi.org/10.1016/0036-9748(89)90372-4
[5] Ohtsuka, H., Xu, Y., Sakka, Y. and Wada, H. (2000) Structural Control of Ceramics and Metals by High Magnetic Field. The Ceramic Society of Japan, 7, 512-516.
[6] Zhou, Y.Z., Zhang, W., Wang, B.Q., He, G.H. and Guo, J.D. (2002) Grain Refinement and Formation of Ultrafine- Grained Microstructure in a Low-Carbon Steel Under Electropulsing. Journal of Materials Research, 17, 2105-2111.
http://dx.doi.org/10.1557/JMR.2002.0311
[7] Zhou, Y.Z., Zhang, W., Sui, M.L., Li, D.X., He, G.H. and Guo, J.D. (2002) Formation of a Nanostructure in a Low- Carbon Steel under High Current Density Electropulsing. Journal of Materials Research, 17, 921-924.
http://dx.doi.org/10.1557/JMR.2002.0134
[8] Tang, D.W., Zhou, B.L., Cao, H. and He, G.H. (1993) Thermal Stress Relaxation Behavior in Thin Films under Transient Laser-Pulse Heating. Journal of Applied Physics, 73, 3749-3752.
http://dx.doi.org/10.1063/1.352907