酞菁铜(CuPc)分子有序纳米结构的自组织生长
Self-Assembled Growth of Ordered CuPc Nanostructures
DOI: 10.12677/JAPC.2015.42009, PDF, HTML, XML, 下载: 3,516  浏览: 17,939  科研立项经费支持
作者: 宋 礼, 王 轩, 陈 露, 宋欢欢, 张永平:西南大学材料与能源学部,重庆
关键词: 酞菁铜扫描隧道显微镜自组织生长分子器件CuPc STM Self-Assembly Molecular Devices
摘要: 酞菁铜(CuPc)因其特殊的分子结构和独特的光电性质而广泛地应用于气体传感器、光电晶体管和太阳能电池等方面。有机薄膜中分子的排列和取向会显著影响分子器件的使用性能。本文评述CuPc分子及其衍生物在金属和石墨表面的自组织生长,和使用扫描隧道显微镜(STM)研究其分子结构和性质。CuPc在超高真空环境下容易形成有序单分子层,而在大气环境下生长分子膜较为困难。但是,通过增加烷烃链,或者与稳定性好的分子混合都能在大气下得到稳定的自组织形貌。
Abstract: Copper Phthalocyanine (CuPc) has been found extensive application in gas sensors, photoelectric transistors and solar cells due to its unique molecular structure and excellent photoelectrical properties. The molecular alignment and orientation in the organic layers affect the performance of devices to a great extent. This paper reviews the self-assembly growth of CuPc layers on metal and graphite surfaces and its molecular structures by scanning tunneling microscopy (STM). The ordered CuPc monolayer is readily obtained and well characterized in ultra-high vacuum; while the self-assembled growth of ordered molecular layer in ambient environment remains a challenge. Finally, we highlight the ways to achieve stable CuPc layers at ambient environment.
文章引用:宋礼, 王轩, 陈露, 宋欢欢, 张永平. 酞菁铜(CuPc)分子有序纳米结构的自组织生长[J]. 物理化学进展, 2015, 4(2): 66-76. http://dx.doi.org/10.12677/JAPC.2015.42009

参考文献

[1] Lu, X., Hipps, K.W., Wang, X.D. and Mazur, U. (1996) Scanning tunneling microscopy of metal phthalocyanines:d(7) and d(9) Cases. Journal of the American Chemical Society, 30, 7197-7202.
[2] Claessens, C.G., Hahn, U. and Torres, T. (2008) Phthalocyanines: from outstanding electronic properties to emerging applications. Chemical Record, 8, 75-97.
[3] Jiang, N., Foley, E.T., Klingsporn, J.M., Sonntag, M.D., Valley, N.A., Dieringer, J.A., Seideman, T., Schatz, G.C., Hersam, M.C. and Van Duyne, R.P. (2012) Observation of multiple vibrational modes in ultrahigh vacuum tip-en- hanced raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Letters, 10, 5061-5067.
[4] Bohrer, F.I., Colesniuc, C.N., Park, J., Ruidiaz, M.E., Schuller, I.K., Kummel, A.C. and Trogler, W.C. (2009) Comparative gas sensing in cobalt, nickel, copper, zinc and metal-free phthalocyanine chemiresistors. Journal of the American Chemical Society, 131, 478-485.
[5] Gao, D.M., Zhang, X., Kong, X., Chen, Y.L. and Jiang, J.Z. (2015) (TFPP)Eu[Pc(OPh)8]Eu[Pc(OPh)8]/CuPc two- component bilayer heterojunction-based organic transistors with high ambipolar performance. ACS Applied Materials and Interfaces, 4, 2486-2493.
[6] Priya, J.J., Aseema M., Jason S., Lee, J.Y. and Baldo, M.A. (2011) Singlet exciton fission in nanostructured organic solar cells. Nano Letters, 4, 1495-1498.
[7] Dutton, G.J. and Robey, S.W. (2012) Exciton dynamics at CuPc/C60 interfaces: Energy dependence of exciton dissociation. Journal of Physical Chemistry C, 36, 19173-19181.
[8] Shrestha, N.K., Kohn, H., Imamura, M., Irie, K., Ogihara, H. and Saji, T. (2010) Electrophoretic deposition of phthalocyanine in organic solutions containing trifluoroacetic acid. Langmuir, 22, 17024-17027.
[9] Berkelaar, R.P., Sode, H., Mocking, T.F., Kumar, A., Poelsema, B. and Zandvliet, H.J.W. (2011) Molecular bridges. Journal of Physical Chemistry C, 5, 2268-2272.
[10] Heitzer, H.M., Marks, T.J. and Ratner, M.A. (2014) Maximizing the dielectric response of molecular thin films via quantum chemical design. ACS Nano, 12, 12587-12600.
[11] Su, Y.R., Ouyang, M., Liu, P.Y., Luo, Z., Xie, W.G. and Xu, J.B. (2013) Insights into the interfacial properties of low-voltage CuPc field-effect transistor. ACS Applied Materials and Interfaces, 11, 4960-4965.
[12] Vasseur, K., Broch, K., Ayzner, A.L., Rand, B.P., Cheyns, D., Frank, C., Schreiber, F., Toney, M.F., Froyen, L. and Heremans, P. (2013) Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near- infrared sensitive solar cells. ACS Applied Materials and Interfaces, 17, 8505-8515.
[13] Yamada, T., Shibuta, M., Ami, Y., Takano, Y., Nonaka, A., Miyakubo, K. and Munakata, T. (2010) Novel growth of naphthalene overlayer on Cu(111) studied by STM, LEED, and 2PPE. Journal of Physical Chemistry C, 31, 13334- 13339.
[14] Pomerantz, M., Aviram, A., McCorkle, R.A., Li, L. and Schrott, A.G. (1992) Rectification of STM current to graphite covered with phthalocyanine molecules. Science, 2, 1115-1118.
[15] Weiss, P.S. (2009) Nanoscience challenges. ACS Nano, 4, 753-754.
[16] Chan, W.C.W., Gogotsi, Y., Hafner, J.H., Moehwald, H., Hammond, P.T., Mulvaney, P.A., Hersam, M.C., Nel, A.E., Javey, A., Nordlander, P.J., Kagan, C.R., Parak, W.J., Khademhosseini, A., Penner, R.M., Kotov, N.A., Rogach, A.L., Lee, S.T., Schaak, R.E., Stevens, M.M., Willson, C.G., Wee, A.T.S. and Weiss, P.S. (2014) A year for nanoscience. ACS Nano, 12, 11901-11903.
[17] Swart, I., Sonnleitner, T., Niedenfuhr, J. and Repp, J. (2012) Controlled lateral manipulation of molecules on insulating films by STM. Nano Letters, 2, 1070-1074.
[18] Shapir, E., Sagiv, L., Borovok, N., Molotski, T., Kotlyar, A.B. and Porath, D. (2008) High-resolution STM imaging of novel single G4-DNA molecules. Journal of Physical Chemistry B, 31, 9267-9269.
[19] Yang, Y.C., Taranovskyy, A. and Magnussen, O.M. (2012) In situ video-STM studies of methyl thiolate surface dynamics and self-assembly on Cu(100) electrodes. Langmuir, 40, 14143-14154.
[20] Tersoff, J. and Hamann, D. (1983) Theory and application for the scanning tunneling microscope. Physical Review Letters, 25, 1998-2001.
[21] Hansma, P.K., Elings, V.B., Marti, O. and Bracker, C.E. (1988) Scanning tunneling microscopy and atomic force microscopy: Application to biology and technology. Science, 8, 209-216.
[22] Zhang, Y.F., Isshiki, H., Katoh, K., Yoshida, Y., Yamashita, M., Miyasaka, H., Breedlove, B.K., Kajiwara, T., Takaishi, S. and Komeda, T. (2009) A low-temperature scanning tunneling microscope investigation of a nonplanar dysprosium phthalocyanine adsorption on Au(111). Journal of Physical Chemistry C, 32, 14407-14410.
[23] Feyter, S.D. and Schryver, F.C.D. (2005) Self-assembly at the liquid/solid interface: STM reveals. Journal of Physical Chemistry B, 10, 4290-4302.
[24] Whitesides, G.M., Mathias, J.P. and Seto, C.T. (1991) Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science, 254, 1312-1319.
[25] Zang, C.Y., Jia, Z.X., Chen, Q.Y., Zhang, L., Si, Z.J., Song, J., Wang, X.W. and Lu, J.W. (2008) Self-assembled growth and photoluminescence of leaf-like Zn/ZnO microstructure by thermal e-vaporation method. Chinese Journal of Luminescence, 6, 945-949.
[26] Zhong, J.Q., Qin, X.M., Zhang, J.L., Kera, S., Ueno, N., Wee, A.T.S., Yang, J.L. and Chen, W. (2014) Energy level realignment in weakly interacting donor acceptor binary molecular networks. ACS Nano, 2, 1699-1707.
[27] Yin, S.X., Wang, C., Xu, B. and Bai, C.L. (2002) Studies of CuPc adsorption on graphite surface and alkane adlayer. Journal of Physical Chemistry B, 106, 9044-9047.
[28] Wang, S.D., Dong, X., Lee, C.S. and Lee, S.T. (2004) Orderly growth of copper phthalocyanine on HOPG at high substrate temperatures. Journal of Physical Chemistry B, 108, 1529-1532.
[29] Ogawa, Y., Niu, T.C., Wong, S.L., Tsuji, M., Wee, A.T.S., Chen, W. and Ago, H. (2013) Self-assembly of polar phthalocyanine molecules on graphene grown by chemical vapor deposition. Journal of Physical Chemistry C, 117, 21849-21855.
[30] Otsuki, J., Kawaguchi, S., Yamakawa, T., Asakawa, M. and Miyake, K. (2006) Arrays of double-decker porphyrins on highly oriented pyrolytic. Langmuir, 22, 5708-5715.
[31] Ikeda, T., Asakawa, M., Miyake, K., Goto, M. and Shimizu, T. (2008) Scanning tunneling microscopy observation of self-assembled monolayers of strapped porphyrins. Langmuir, 24, 12877-12882.
[32] Zheng, Q.N., Wang, L., Zhong, Y.W., Liu, X.H., Chen, T., Yan, H.J., Wang, D., Yao, J.N. and Wan, L.J. (2014) Adaptive reorganization of 2D molecular nanoporous network induced by coadsorbed guest molecule. Langmuir, 30, 3034- 3040.
[33] Ahlund, J., Schnadt, J., Nilson, K., Gothelid, E., Schiessling, J., Besenbacher, F., Martensson, N. and Puglia, C. (2007) The adsorption of iron phthalocyanine on graphite: A scanning tunneling microscopy study. Surface Science, 601, 3661-3667.
[34] Antczak, G., Kaminski, W. and Morgenstern, K. (2015) Morgenstern stabilizing CuPc coordination networks on Ag(100) by Ag atoms. Journal of Physical Chemistry C, 3, 1442-1450.
[35] Xiao, K., Deng, W., Keum, J.K., Yoon, M., Vlassiouk, I.V., Clark, K.W., Li, A.P., Kravchenko, I.I., Gu, G., Payzant, E.A., Sumpter, B.G., Smith, S.C., Browning, J.F. and Geohegan, D.B. (2013) Surface-induced orientation control of CuPc molecules for the epitaxial growth of highly ordered organic crystals on graphene. Journal of the American Chemical Society, 9, 3680-3687.
[36] de Oteyza, D.G., Garcia-Lastra, J.M., Goiri, E., El-Sayed, A., Wakayama, Y. and Ortega, J.E. (2014) Asymmetric response toward molecular fluorination in binary copper-phthalocyanine/pentacene assemblies. Journal of Physical Chemistry C, 32, 18626-18630.
[37] Sumpter, B.G., Liang, L.B., Nicolai, A. and Meunier, V. (2014) Interfa-cial properties and design of functional energy materials. Accounts of Chemical Research, 11, 3395-3405.
[38] Chen, S., Chen, W., Huang, H., Gao, X.Y., Qi, D.C., Wang, Y.Z. and Wee, A.T.S. (2010) Template-directed molecular assembly on silicon carbide nanomesh: Comparison between CuPc and pentacene. ACS Nano, 2, 849-854.
[39] Chen, W., Huang, H., Chen, S., Gao, X.Y. and Wee, A.T.S. (2008) Low-temperature scanning tunneling microscopy and near-edge X-ray absorption fine structure investigations of molecular orientation of copper(II) phthalocyanine thin films at organic heterojunction interfaces. Journal of Physical Chemistry C, 112, 5036-5042.
[40] Huang, Y.L., Li, H., Ma, J., Huang, H., Chen, W. and Wee, A.T.S. (2010) Scanning tunneling microscopy investigation of self-assembled CuPc/F16CuPc binary superstructures on graphite. Langmuir, 5, 3329-3334.
[41] Park, J.H., Choudhry, P. and Kummel, A.C. (2014) NO adsorption on copper phthalocyanine functionalized graphite. Journal of Physical Chemistry C, 19, 10076-10082.
[42] Lei, S.B., Deng, K., Yang, D.L., Zeng, Q.D. and Wang, C. (2006) Charge-transfer effect at the interface of phthalocyanine-electrode contact studied by scanning tunneling spectroscopy. Journal of Physical Chemistry B, 3, 1256-1260.
[43] Zhang, K.H.L., Li, H., Mao, H.Y., Huang, H., Ma, J., Wee, A.T.S. and Chen, W. (2010) Control of two-dimensional ordering of F16CuPc on Bi/Ag(111): Effect of interfacial interactions. Journal of Physical Chemistry C, 25, 11234- 11241.
[44] El-Sayed, A., Mowbray, D.J., Garcia, L.J.M., Rogero, C., Goiri, E., Borghetti, P., Turak, A., Doyle, B.P., Dell, A.M., Floreano, L., Wakayama, Y., Rubio, A., Ortega, J.E. and de Oteyza, D.G. (2012) Supramolecular environment-de- pendent electronic properties of metal-organic interfaces. Journal of Physical Chemistry C, 7, 4780-4785.
[45] Hasegawa, Y., Yamada, Y. and Sasaki, M. (2014) Reordering and disordering of the copper hexadecafluorophthalocyanine (F16CuPc) monolayer by K doping. Journal of Physical Chemistry C, 42, 24490-24496.
[46] Lei, S.B., Yin, S.X., Wang, C., Wan, L.J. and Bai, C.L. (2002) Modular assembly of al-kyl-substituted phthalocyanines with 1-iodooctadecane. Chemistry of Materials, 14, 2837-2838.
[47] Lei, S.B., Wang, C., Yin, S.X. and Bai, C.L. (2001) Single molecular arrays of phthalocyanine assembled with nanometer sized alkane templates. Journal of Physical Chemistry B, 105, 12272-12277.
[48] Qiu, X.H., Wang, C., Yin, S.X., Zeng, Q.D., Xu, B. and Bai, C.L. (2000) Self-assembly and immobilization of metallophthalocyanines by alkyl substituents observed with scanning tunneling microscopy. Journal of Physical Chemistry B, 15, 3570-3574.
[49] Antczak, G., Kaminski, W. and Morgenstern, K. (2015) Stabilizing CuPc coordination networks on Ag(100) by Ag atoms. Journal of Physical Chemistry C, 119, 1442-1450.
[50] Su, Y.R., Ouyang, M., Liu, P.Y., Luo, Z., Xie, W.G. and Xu, J.B. (2013) Insights into the interfacial properties of low-voltage CuPc field-effect transistor. ACS Applied Materials and Interfaces, 5, 4960-4965.
[51] Alvarez, L., Fall, F., Belhboub, A., Le Parc, R., Almadori, Y., Arenal, R., Aznar, R., Dieu-donne-Geroge, P., Hermet, P., Rahmani, A., Jousselme, B., Campidelli, S., Cambedouzou, J., Saito, T. and Bantignies, J.L. (2015) One-dimensional molecular crystal of phthalocyanine confined into single-walled carbon nanotubes. Journal of Physical Chemistry C, 119, 4217-4223.