嵌段共聚物PS-b-P4VP自组装法合成有序NiFe2O4纳米颗粒
Synthesizing NiFe2O4 Nanoparticles by Self-Assembly Diblock Polymer PS-b-P4VP
DOI: 10.12677/APP.2014.43004, PDF, HTML, 下载: 3,710  浏览: 10,486  国家自然科学基金支持
作者: 舒 川, 汤如俊, 杨 浩:苏州大学物理与光电·能源学部,苏州
关键词: PS-b-P4VP自组装模板磁性纳米颗粒NiFe2O4PS-b-P4VP Self-Assembly Template Magnetic Nanoparticles NiFe2O4
摘要: 本文利用嵌段共聚物poly(styrene-b-4-vinylpyridine) (PS-b-P4VP)自组装方法,在硅片上合成了准六角有序的镍铁氧(NiFe2O4)纳米颗粒阵列。X-ray光电子能谱证实了纳米颗粒具有NiFe2O4元素成份;原子力显微镜和扫描电子显微镜的图像显示NiFe2O4纳米颗粒具有10 nm的高度、33 nm的粒径和130 Gb/inch2的超高面密度;磁性质测试结果表明NiFe2O4纳米颗粒从低温(50 K)到室温范围都具有软磁特性。因此我们获得的这种磁性纳米颗粒阵列在微波电子器件领域具有潜在的应用价值
Quasi hexagonally ordered NiFe2O4 nanoparticle array is synthesized by self-assembly diblock polymer (PS-b-P4VP) on silicon substrate in this paper. X-ray Photoelectron Spectroscopy confirms the element of NiFe2O4 nanoparticles. AFM and SEM images show that nanoparticles have tens of nanometer scales (height is about 10 nm, diameter is about 33 nm) and a high areal density (130 Gb per inch2). Magnetism measurements by PPMS imply soft ferromagnetism of NiFe2O4 nanoparticles from 50 K to 300 K. So the magnetic nanoparticle array has the potential application value in microwave device.
文章引用:舒川, 汤如俊, 杨浩. 嵌段共聚物PS-b-P4VP自组装法合成有序NiFe2O4纳米颗粒[J]. 应用物理, 2014, 4(3): 24-30. http://dx.doi.org/10.12677/APP.2014.43004

参考文献

[1] Wei, L.L., Pooi, S.L., Anup, L., Yeng, M.L., Tupei, C., Sam, Z., Ananth, D. and Subodh, G.M. (2008) Non-volatile or- ganic memory applications enabled by in situ synthesis of gold nanoparticles in a self-assembled block copolymer. Ad- vanced Materials, 20, 2325-2331.
[2] Jih, J.W., Ya, L.L., Hsuen, H.C. and Daniel, K.P.W. (2006) Growth and magnetic properties of oriented α-Fe2O3 nano- rods. The Journal of Physical Chemistry B Letters, 110, 18108-18111.
[3] Dong, O.S., Duck, H.L., Hyoung, S.M., Seong, J.J., Ju, Y.K., Jeong, H.M., Heesook, C., Soojin, P. and Sang, O.K. (2011) Sub-nanometer level size tuning of a monodisperse nanoparticle array via block copolymer lithography. Ad- vanced Functional Materials, 21, 250-254.
[4] Thomas, S., Hannah, L., Marzia, M., Miriam, V.F.M., Lorena, R.P. and Giuseppe, B. (2008) Block copolymer nano- structures. Nanotoday, 3, 3-4.
[5] Rachel, A.S. (2005) Patterning with block copolymer thin films. Materials Science and Engineering, 48, 191-226.
[6] Lixin, S., Yeng, M.L., Chris, B. and Puat, W.T. (2007) One-step synthesis of titania nanoparticles from PS-P4VP dib- lock copolymer solution. Nanotechnology, 18, Article ID: 135605.
[7] Soojin, P., Jia, Y.W., Bokyung, K., Wei, C. and Thomas, P.R. (2007) Solvent-induced transition from micelles in solu- tion to cylindrical microdomains in diblock copolymer thin films. Macromolecules, 40, 9059-9063.
[8] Peter, A.M., Soojin, P., Sibel, E.Y., Dong, H.L., Ozgur, Y., Mark, T.T., Thomas, P.R. and Marc, A. (2009) Block-co- polymer-based plasmonic nanostructures. ASCNANO, 3, 3987-3992.
[9] Youngsuk, K., Hee, H., Yunseok, K., Woo, L., Marin, A., Sunggi, B. and Jin, K.K. (2010) Ultrahigh density array of epitaxial ferroelectric nanoislands on conducting substrates. Nano Letters, 10, 2141-2146.
[10] Linda, Y.L.W., Leng, B., He, W., Bisht, A. and Wong, C.C. (2013) Metal-polymer nanocomposite films with ordered vertically-aligned metal cylinders for optical application. International Nanoelectronics Conference, 5, 393-396.
[11] Yunxia, H., Dian, C., Soojin, P., Todd, E. and Thomas, P.R. (2010) Guided assemblies of ferritin nanocages: Highly ordered arrays of monodisperse nanoscopic elements. Advanced Materials, 22, 2583-2587.
[12] Jerome, L., Geoffrey, I.N.W., John, K., James, B.M. and David, R.G.M. (2011) Nucleation and growth of fe nanopar- ticles in SiO2: A tem, XPS, and Fe l-edge XANES investigation. The Journal of Physical Chemistry C, 115, 20978- 20985.
[13] Hosik, P., Perla, A., Marc, A.D., Ashok, M., Heechul, C. and Nosang, V.M. (2008) Electrodeposition of maghemite (γ-Fe2O3) nanoparticles. Chemical Engineering Journal, 139, 208-212.
[14] Pilar, P., Valentin, N., Khalid, N., Munetaka, O., Mohammed, A.L. and Raquel, D. (2012) XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth. Applied Surface Science, 258, 8807- 8813.
[15] Duque, J.G.S., Souza, E.A., Meneses, C.T. and Kubot, L. (2007) Magnetic properties of NiFe2O4 nanoparticles pro- duced by a new chemical method. Physica B, 398, 287-290.
[16] Vladimir, S., Ingo, B., Armin, F., Paul, H., Frank, K., Dirk, M., Fred, J.L., Stewart, J.C. and Klaus, D.B. (2007) Nano- crystalline nickel ferrite, NiFe2O4: Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. The Journal of Physical Chemistry C, 111, 5026-5033.