层间距对石墨振荡器振荡行为影响的分子动力学模拟
Molecular Dynamics Simulation of Effect of Interlayer Spacing on Oscillate Behavior of Graphite Oscillator
DOI: 10.12677/APP.2013.310032, PDF, HTML, 下载: 3,047  浏览: 9,944  国家自然科学基金支持
作者: 耿淑芳, 徐建刚:西安邮电大学理学院,西安
关键词: 分子动力学模拟石墨振荡器Molecular Dynamics Simultaion; Graphite; Oscillator
摘要: 用分子动力学方法研究了层间距对石墨振荡器振荡性质的影响。在分子动力学模拟中,采用Tersoff- Brenner势结合Lennard-Jones势描述碳原子之间的相互作用。计算结果表明:层间距对石墨振荡器振荡性质的影响非常明显,随着层间距的增大石墨振荡器振荡的能量损耗越来越小。当石墨层间距为0.32 nm时,由于石墨层间摩擦力的急剧增大,石墨振动振幅迅速减低。当石墨层间距大于0.32 nm时,石墨振荡器的振荡频率随着层间距的增大而减少。研究结果为设计高性能的振荡器提供了一定的理论依据。
Abstract:  The oscillate behavior of graphite oscillators with different interlayer spacing was presented by molecular dynamics simulation method. The interaction force between carbon atoms was modeled by using the Tersoff-Brenner potential coupled with the Lennard-Jones potential. The results show that the effect of interlayer spacing on oscillate behavior of graphite oscillator is very obvious, and with the increase of interlayer spacing, the energy dissipation of graphite oscillator gradually decreases. When the interlayer spacing of graphite is 0.32 nm, the vibration amplitude of graphite oscillator decreases rapidly due to higher interlayer friction. In addition, the oscillation frequency of graphite oscillator decreases with increasing interlayer spacing when the interlayer spacing is bigger than 0.32 nm. The general conclusions derived from this work may provide a guideline for the design of high performance oscillator.
文章引用:耿淑芳, 徐建刚. 层间距对石墨振荡器振荡行为影响的分子动力学模拟[J]. 应用物理, 2013, 3(10): 171-174. http://dx.doi.org/10.12677/APP.2013.310032

参考文献

[1] J. J. Cumings and A. Zettl (2000) Low-friction nanoscale linear bearing realized from multiwall carbon Nanotubes. Science, 289, 602-604.
[2] M. F. Yu, O. Lourie, M. J. Dyer, et al. (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637-640.
[3] Q. S. Zheng and Q. Jiang (2002) Multiwalled carbon nanotubes as gigahertz oscillators. Physical Review Letters, 88, Article ID: 045503.
[4] Q. S. Zheng, J. Liu and Q. Jiang (2002) Excess van der Waals interaction energy of a multiwalled carbon nanotube with an ex- truded core and the induced core oscillation. Physical Review B, 65, Article ID: 245409.
[5] H. Su, W. A. Goddard, Y. Zhao (2006) Dynamic friction force in a carbon peapod oscillator. Nanotechnology, 17, 5691-5695.
[6] J. W. Kang, Q. Jiang and H. J. Hwang (2006) A double-walled carbon nanotube oscillator encapsulating a copper nanowire. Nanotechnology, 17, 5485-5489.
[7] W. L. Guo, W. Y. Zhong and Y. T. Dai (2005) Coupled defect- size effects on interlayer friction in multiwalled carbon nano- tubes. Physical Review B, 72, Article ID: 075409.
[8] J. W. Kang and J. H. Lee (2008) Frequency characteristics of triple-walled carbon nanotube gigahertz devices. Nanotechnol- ogy, 19: Article ID: 285704.
[9] Y. Zhao, C. C. Ma, G. H. Chen, et al. (2003) Energy dissipation mechanisms in carbon nanotube oscillators. Physical Review Letters, 91, Article ID: 175504.
[10] P. Liu, H. J. Gao and Y. W. Zhang (2008) Effect of defects on oscillation characteristics and instability of carbon nanotube-bas- ed oscillators. Applied Physics Letters, 93, Article ID: 083107.
[11] W. Guo, Y. Guo Y, H. Gao, et al. (2003) Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Physi- cal Review Letters, 91, Article ID: 125501.
[12] 谢芳, 朱亚波, 张兆慧 (2008) 碳纳米管振荡的分子动力学模拟. 物理学报, 9, 5833-5837.
[13] H. Y. Song and X. W. Zha (2009) Molecular dynamics study of effects of radius and defect on oscillatory behaviors of C60- nanotube oscillators. Physics Letters A, 373, 1058-1061.
[14] Z. Liu, J. R. Yang, F. Grey, et al. (2012) Observation of micro- scale superlubricity in graphite. Physical Review Letters, 108, Article ID: 205503.
[15] D. W. Brenner, O. A. Shenderova, J. A. Harrison, et al. (2002) A second-generation reactive empirical bond order (REBO) poten- tial energy expression for hydrocarbons. Journal of Physics: Condensed Matter, 14, 783-802.
[16] S. P. Xiao and W. Y. Hou (2009) Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites. Physical Review B, 73, Article ID: 115406.