乙二醇辅助固相法合成LiFePO4
Ethylene Glycol-Assisted Synthesis of LiFePO4 by Traditional Solid-State Method
DOI: 10.12677/MS.2013.35041, PDF, HTML, XML, 下载: 3,494  浏览: 13,702  科研立项经费支持
作者: 李艳, 刘英才*, 王洁:中国海洋大学材料科学与工程研究院,青岛
关键词: 锂离子电池LiFePO4正极材料固相合成法乙二醇Lithium-Ion Battery; Lithium Iron Phosphate; Cathode Material; Solid-State Method; Ethylene Glycol
摘要: 本文以Li2CO3FeC2O4·2H2ONH4H2PO4为原料,采用传统的固相法合成锂离子电池正极材料LiFePO4/C,为了提高电化学性能,加入乙二醇进行表面改性。利用X射线衍射仪(XRD),扫描电子显微镜(SEM)对材料晶体结构、表观形貌和化学成分进行表征,采用恒电流充放电测试技术对其电化学性能进行测定,并且研究了乙二醇对LiFePO4/C晶体生长方向的影响。结果表明经乙二醇改性的LiFePO4/C颗粒呈板状堆积,在0.1 C0.5 C1.0 C的电流密度下充放电平台稳定,并且具有较好的循环效率。
Abstract: Lithium-ion battery cathode material LiFePO4/C was synthesized by Li2CO3, FeC2O4·2H2O, NH4H2PO4 ina traditional way, and ethylene glycol was used as surfactant for advancing electrochemical performance. The crystalline structure, morphology and chemical composition of LiFePO4/C particles were characterized by X-ray diffraction, scan- ning electron microscopy and electrochemical performance was characterized by constant-current charge-discharge test technique, respectively. In addition, the effects of ethylene glycol on the crystal growth direction were discussed in this paper. The results show that the grains of LiFePO4/C which are synthesized with ethylene glycol-assisted present plate- type accumulation. The charge-discharge potential flats present smooth in different current density (0.1C,0.5Cand1.0C) and the cycle abilityis stable.
文章引用:李艳, 刘英才, 王洁. 乙二醇辅助固相法合成LiFePO4[J]. 材料科学, 2013, 3(5): 230-235. http://dx.doi.org/10.12677/MS.2013.35041

参考文献

[1] C. H. Yim, E. A. Baranova, Y. Abu-Lebdeh, et al. Highly ordered LiFePO4/cathode material for Li-ion batteries templated by sur- factant-modified polystyrene colloidal crystals. Journal of Power Sources, 2012, 205: 414-419.
[2] A. S. Andersson, J. O. Thomas. The source of first-cycle capa- city loss in LiFePO4. Journal of Power Sources, 2001, 97: 498- 502.
[3] A. S. Andersson, B. Kalska, L. Häggström, et al. Lithium extrac- tion/insertion in LiFePO4: An X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics, 2000, 130(1): 41-52.
[4] A. Yamada, S. C. Chung and K. Hinokuma. Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical So- ciety, 2001, 148(3): A224-A229.
[5] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough. Pho- spho-olivines as positive-electrode materials for rechargeable li- thium batteries. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[6] D. H. Seo, H. Gwon, S. W. Kim, et al. Multicomponent olivine cathode for lithium rechargeable batteries: A first-principles stu- dy. Chemistry of Materials, 2009, 22(2): 518-523.
[7] M. S. Islam, D. J. Driscoll, C. A. J. Fisher, et al. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chemistry of Materials, 2005, 17(20): 5085-5092.
[8] S. Y. Chung, J. T. Bloking and Y. M. Chiang. Electronically con- ductive phospho-olivines as lithium storage electrodes. Nature materials, 2002, 1(2): 123-128.
[9] P. P. Prosini, M. Lisi, D. Zane, et al. Determination of the che- mical diffusion coefficient of lithium in LiFePO4. Solid State Io- nics, 2002, 148(1): 45-51.
[10] R. Amin, P. Balaya and J. Maier. Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochemical and Solid-State Letters, 2007, 10(1): A13-A16.
[11] M. Thackeray. Lithium-ion batteries: An unexpected conductor. Nature Materials, 2002, 1(2): 81-82.
[12] X. L. Wu, L. Y. Jiang, F. F. Cao, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode ma- terial for electrochemical energy-storage devices. Advanced Ma- terials, 2009, 21(25-26): 2710-2714.
[13] F. Cheng, W. Wan, Z. Tan, et al. High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid- assisted solid-state reaction. Electrochimica Acta, 2011, 56(8): 2999-3005.
[14] R. Malik, D. Burch, M. Bazant, et al. Particle size dependence of the ionic diffusivity. Nano Letters, 2010, 10(10): 4123-4127.
[15] L. Wang, Y. Huang, R. Jiang, et al. Preparation and characteriza- tion of nano-sized LiFePO4 by low heating solid-state coordina- tion method and microwave heating. Electrochimica Acta, 2007, 52(24): 6778-6783.
[16] K. Dokko, S. Koizumi, H. Nakano, et al. Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. Journal of Materials Chemistry, 2007, 17(45): 4803-4810.
[17] W. Kang, C. Zhao, R. Liu, et al. Ethylene glycol-assisted nano- crystallization of LiFePO4 for a rechargeable lithium-ion battery cathode. CrystEngComm, 2012, 14(6): 2245-2250.
[18] D. Morgan, A. Vander Ven and G. Ceder. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochemi- cal and Solid-State Letters, 2004, 7: A30-A32
[19] B. Xu, D. Qian, Z. Wang, et al. Recent progress in cathode ma- terials research for advanced lithium ion batteries. Materials Sci- ence and Engineering: R: Reports, 2012, 73(5-6): 51-65.