庆春路过江隧道基坑围护结构监测分析
Monitoring Analysis of Retaining Structures of Excavation Pit of Qingchun Road River-Crossing Tunnel in Hangzhou
DOI: 10.12677/HJCE.2013.24039, PDF, HTML, XML, 下载: 3,215  浏览: 7,729 
作者: 董振刚:杭州市钱江新城建设管理委员会,杭州;李宗梁*:杭州庆春路过江隧道有限公司,杭州
关键词: 过江隧道围护结构监测分析River-Crossing Tunnel; Retaining Structure; Monitoring; Analysis
摘要: 通过监测分析表明,在深基坑开挖过程中,围护体的最大水平位移与开挖深度和开挖时间密切相关,在多道支撑工况下,支撑轴力随开挖纵向长度增加、开挖深度增加呈波动变化,环境温度明显变化和强降雨等因素对支撑轴力的影响明显,邻近基坑的支撑架设与拆除对支撑轴力有较大影响,基坑周边地下水位变化是影响地表沉降的主因,及时架设支撑、尽快完成底板结构、减少基坑暴露时间在控制围护体位移的同时能有效控制地表沉降。工程实践表明,复杂地质条件下大型深基坑建设,建立两套相对独立的监测系统非常必要,有效的数据信息为建设者实时掌握结构工况、及时采取相应措施、顺利完成工程建设提供了重要保障。
Abstract: In situ monitoring demonstrates that the maximum horizontal displacements of the retaining structures are closely related to the excavation depth and time during excavation of the foundation pit. When multiple supports are applied, the axial forces of the supports fluctuate with increase of longitudinal length and depth of the excavation pit. Axial forces of the supports are significantly influenced by changes of external conditions such as temperature and rainfall. In addition, they are also greatly impacted by the set-up and removal of steel supports of the adjacent pit. The changes in ground water table resulting from dewatering and seepage are the main factors inducing settlement of ground surface. Displacements of the supports and the ground surface can be well controlled by in-time set-up of the supports, quick built-up of the basement and decreasing of stand-up duration. Field practice reveals that the implementation of two independent monitoring systems is essential during construction of large and deep excavation pits in complex ground conditions. Timely and effective monitoring gives a strong support to real-time acquirement of the conditions of the structures, in-time implementation of corresponding countermeasures and successful complement of the project.
文章引用:董振刚, 李宗梁. 庆春路过江隧道基坑围护结构监测分析[J]. 土木工程, 2013, 2(4): 225-231. http://dx.doi.org/10.12677/HJCE.2013.24039

参考文献

[1] 刘建航, 侯学渊. 基坑工程手册[M]. 北京: 中国建筑工业出版社, 1997.
[2] 张忠苗. 桩基工程[M]. 北京: 中国建筑工业出版社, 2007.
[3] 周希圣, 陈裕康, 张伟. SMW 围护深基坑逆筑法设计研究与工程实践[J]. 岩土工程学报, 2004, 26(4): 511-515.
[4] 张冠军, 徐永福, 傅德明. SMW 工法型钢起拔试验研究及应用[J]. 岩石力学与工程学报, 2002, 21(3): 444-448.
[5] 顾士坦, 施建勇, 深基坑. SMW 工法模拟试验研究及工作机制分析[J]. 岩土力学, 2008, 29(4): 1121-1126.
[6] 王浩, 覃卫民, 汤华. 关于深基坑施工期监测现状的一些探讨[J]. 岩土工程学报, 2006, 28(增): 1789-1793.
[7] 安关峰, 高峻岳. 广州地铁公园前地下空间深基坑综合支护监测分析[J]. 岩土工程学报, 2007, 29(6): 872-979.
[8] 张忠苗, 赵玉勃, 吴世明, 王博. 过江隧道深基坑中SMW 工法加钢支撑围护结构现场监测分析[J]. 岩石力学与工程学报, 2010, 29(6): 1270-1278.
[9] 吴世明, 李宗梁, 焦齐柱. 庆春路过江隧道超深基坑降水放坡结合SMW工法的应用[A]. 地下工程建设与环境和谐发展—第四届中国国际隧道工程研讨会文集[C]. 上海: 同济大学出版社, 2009, 10: 827-837.