铝掺杂锆酸钕纳米晶的制备以及对甲基橙的催化降解
Preparation and Catalytic Degradation of Methyl Orange on Aluminium Ion Doped Neodymium Zirconate Nanocrystals
DOI: 10.12677/JAPC.2013.22003, PDF, HTML, 下载: 3,368  浏览: 11,634  国家自然科学基金支持
作者: 柏云杉*:盐城工学院应用化学研究所,盐城;包建春, 陆路德:南京理工大学软化学与功能材料教育部重点实验室,南京
关键词: 盐助溶液燃烧法Nd2?xAlxZr2O7烧绿石甲基橙光催化Salt-Assistant Gly Combustion Method; Nd2?xAlxZr2O7; Pyrochlore; Methyl Orange; Photocatalytic
摘要: 以硝酸锆、硝酸铝和硝酸钕作为原材料,甘氨酸水溶液和无机盐作为溶剂和分散剂,通过盐助甘氨酸溶液燃烧法(salt-assistant gly combustion method, SGCM)制备了具有立方晶系的烧绿石型铝掺杂锆酸钕纳米晶。产物经X-射线粉末衍射、透射电镜、高分辨电子显微镜、傅里叶变换红外光谱以及拉曼光谱表征。结果表明:钕离子被铝离子部分替代而保持原有烧绿石结构,制得的纳米粒子具有较完美的晶体结构,分散性较好,热处理温度在700℃时单一相的Nd2−xAlxZr2O7纳米晶已完全形成;所制得的纳米晶由平均粒径为10~30 nm的球状粒子组成,根据Scherrer公式计算出的平均粒径为14.5 nm;从透射电镜照片的(222)面的晶面距为0.305 nm,与理论计算值一致。以光催化降解甲基橙为探针,考察复合产物的催化活性。检测到相对于Nd2Zr2O7而言,Al3+的掺杂可以明显的提高它的催化性能,当nAl:nNd = 1:19时其催化活性最强。 Cubic pyrochlore type aluminium ion doped neodymium zirconate nanocrystals were prepared by salt- assistant gly combustion method (SGCM) with zirconium nitrate, aluminum nitrate and neodymium nitrate as raw materials, glycine as the incendiary agent and inorganic salt as solvent and dispersant. The products were characterized by XRD, TEM, HRTEM, High-resolution electron microscopy, FT-IR and Raman spectrum. The results showed that neodymium ions were partially substituted by aluminium ions, while maintaining the original pyrochlore structure. The obtained nano particles had a perfect crystal structure and good dispersion. Single phase

Nd2−xAlxZr2O7 nanocrystals al-ready fully formed with the heat treatment temperature in 700°C. The obtained nanocrystals were consisted of spheroidal particles with the average grain size of 10 - 30 nm. According to the Scherrer formula, the calculated mean grain size is 14.5 nm. The crystal plane distance from the (222) plane in the photo of transmission electron microscopy is 0.305 nm, which is consistent with the theoretical calculated value. The catalytic activity of the composite product is determined by the reaction speed of photocatalytic degradation of methyl orange. It is detected that compared to Nd2Zr2O7, the doping of Al3+ can obviously improve its catalytic performance. When nAl:nNd = 1:19, it has the strongest catalytic activity.

文章引用:柏云杉, 包建春, 陆路德. 铝掺杂锆酸钕纳米晶的制备以及对甲基橙的催化降解[J]. 物理化学进展, 2013, 2(2): 15-20. http://dx.doi.org/10.12677/JAPC.2013.22003

参考文献

[1] 张志昆, 崔作林. 纳米技术与纳米材料[M]. 北京: 国防工业出版社, 2000: 9.
[2] 张立德. 纳米材料[M]. 北京: 化学工业出版社, 2000: 39-50.
[3] 张立德. 超微粉体制备与应用技术[M]. 北京: 中国石化工业出版社, 2001: 25-28.
[4] 张玉龙,李长德. 纳米技术与纳米塑料[M]. 北京: 中国轻工业出版社, 2000: 33-81.
[5] A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(S8): 37-38.
[6] M. Uno, A. Kosuga, M. Okui, et al. Photoelectrochemical study of lanthanide zirconium oxides, Ln2Zr2O7 (Ln = La, Ce, Nd and Sm). Journal of Alloys and Compounds, 2006, 420: 291-297.
[7] Y. Tong, J. Zhu, L. Lu, et al. Preparation and characterization of Ln2Zr2O7 (Ln = La and Nd) nanocrystals and their photocatalytic properties. Journal of Alloys and Compounds, 2008, 465: 280- 284.
[8] E. J. Harvey, K. R. Whittle, G. R. Lumpkin, et al. Solid solubilities of (La Nd,)2(Zr,Ti)2O7 phases deduced by neutron diffraction. Journal of Solid State Chemistry, 2005, 178(3): 800-810.
[9] Y. Tong, L. Lu, X. Yang, et al. Characterization and their photo- catalytic properties of Ln2Zr2O7 (Ln = La, Nd, Sm, Dy, Er) nanocrystals by stearic acid method. Solid State Sciences, 2008, 10(10): 1379-1383.
[10] Y. Matsumura, M. Yoshinaka, K. Hirota, et al. Formation and sintering of La2Zr2O7 by the hydrazine method. Solid State Communications, 1997, 104(6): 341-345.
[11] Y. Bai, L. Lu and J. Bao. Synthesis and characterization of lan- thanum zirconate nanocrystals doped with iron ions by a salt- assistant combustion method. Journal of Inorganic and Organ- ometallic Polymers and Materials, 2011, 21(3): 590-594.
[12] L. Chen, L. Li and G. Li. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. Journal of Alloys and Compounds, 2008, 464(1-2): 532-536.
[13] J. Zhu, G. Zeng, F. Nie, et al. Decorating graphene oxide with CuO nanoparticles in a water-isopropanol system. Nanoscale, 2010, 2(6): 988-994.
[14] N. A. Dhas, K. C. Patil. Combustion synthesis and properties of fine-particle rare-earth-metal zirconates, Ln2Zr2O7. Journal of Materials Chemistry, 1993, 3(12): 1289-1294.
[15] K. K. Rao, T. Banu, M. Vithal, et al. Preparation and characteri- zation of bulk and nano particles La2Zr2O7 and Nd2Zr2O7 by sol-gel method. Materials Letters, 2002, 54(2-3): 205-210.
[16] 汪国忠, 张立德, 牟季美. 纳米氧化镍微粉的制备及光吸收谱[J]. 物理化学学报, 1997, 13(5): 445-448.
[17] Y. Tong, Y. Wang, Z. Yu, et al. Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method. Materials Letters, 2008, 62(6-7): 889-891.
[18] Y. Tong, Y. Wang. Salt-assistant combustion synthesis of nano- crystalline Nd2 (Zr1−xSnx)2O7 (0 ≤ x ≤ 1) solid solutions. Materi- als Characterization, 2009, 60(11): 1382-1386.
[19] 汪信,郝青丽,张莉莉. 软化学方法导论[M]. 北京: 科学出版社, 2007: 136-292.
[20] S. Yang, C. Wang, L. Chen, et al. Facile dicyandiamide medi- ated fabrication of well-defined CuO hollow microspheres and their catalytic application. Materials Chemistry and Physics, 2010, 120(2-3): 296-301.
[21] L. Li, X. Sun, X. Qiu, et al. Nature of catalytic activities of CoO nanocrystals in thermal decomposition of ammonium perchlorate. Inorganic Chemistry, 2008, 47(19): 8839-8846.