外泌体miRNA在肝癌中的诊治进展
Advances in the Diagnosis and Treatment of Exosomal miRNA in Liver Cancer
DOI: 10.12677/acm.2024.1451655, PDF, HTML, XML, 下载: 56  浏览: 101  科研立项经费支持
作者: 谭聪聪*:成都中医药大学医学与生命科学学院,四川 成都;遂宁市中心医院肝胆外科,四川 遂宁;戴 毅:遂宁市中心医院肝胆外科,四川 遂宁;余 华#:成都中医药大学附属医院普外科,四川 成都
关键词: 肝癌外泌体microRNA乙肝相关性肝癌早期诊断靶向治疗Liver Cancer Exosomes microRNA Hepatitis B-Associated Liver Cancer Early Diagnosis Targeted Therapies
摘要: 肝癌(liver cancer)是全球危害人类健康的主要癌症之一,具有发病隐匿、恶性程度高、治疗效果及预后差等特点。外泌体(Exosomes)是细胞间通讯的重要载体,是细胞分泌的囊泡,包含蛋白质、miRNA、mRNA等。近年来,大量研究表明外泌体microRNA (miRNA)在肝癌发生发展不同时期呈现不同表达,因此miRNA被认为是肝癌诊断和治疗极具潜力的生物标志物。本文就miRNA作为诊断与治疗的生物标志物在肝癌发展的各阶段最新研究进展进行综述。重点介绍miRNA在肝癌的诊断、治疗及其预后方面的研究进展。
Abstract: Liver cancer is one of the major cancers jeopardizing human health worldwide, characterized by insidious onset, high degree of malignancy, and poor therapeutic effect and prognosis. Exosomes are important carriers of intercellular communication and are vesicles secreted by cells that contain proteins, miRNAs, mRNAs and so on. In recent years, a large number of studies have shown that exosomal microRNAs (miRNAs) are differently expressed at different periods of liver cancer development, and thus miRNAs are considered to be highly promising biomarkers for liver cancer diagnosis and treatment. This article provides a review of the latest research advances on miRNAs as biomarkers for diagnosis and treatment at various stages of liver cancer development and focuses on the research progress of miRNAs in the diagnosis and treatment of liver cancer and their prognosis.
文章引用:谭聪聪, 戴毅, 余华. 外泌体miRNA在肝癌中的诊治进展[J]. 临床医学进展, 2024, 14(5): 2093-2102. https://doi.org/10.12677/acm.2024.1451655

1. 引言

肝癌(liver cancer, LC)是全球危害人类健康的主要肿瘤之一,全世界每年约有905,677个新发病例和830,180个死亡病例 [1] 。肝癌患者的疗效与预后在很大程度上取决于其诊断的时期,早期肝癌的预后要远大于晚期肝癌。因此,通过对肝癌的早诊断、早治疗是提高肝癌患者生存率与生命质量的重要保障。

针对肝癌所处的时期,肝癌的主要治疗方法有手术切除、肝移植、射频消融、化疗栓塞术和系统治疗 [2] [3] 。高强度聚焦超声(海扶技术)也是肝癌治疗的一种有效方法 [4] [5] [6] [7] ,Tan To Cheung等人的研究表明,尤其是对于晚期肝硬化和肝癌患者,高强度聚焦超声是安全有效的 [5] ,Yongshuo Ji等人认为:无论肿瘤是否原发或转移,高聚焦超声都可认为是一种安全且有效的治疗方法 [7] 。但是尽管目前肝癌的治疗方法众多,但肝癌的治疗效果仍欠佳,5年生存率低。

CT和MRI等影像学方法为肝癌的诊断提供了巨大的价值,但在微小肝癌的诊断方面却限制了其应用 [8] 。而作为金标准的穿刺活检和病理学检查,却因为其有创性不适用于大规模筛查和早期诊断,并且在疾病早期,穿刺活检也存在一定的假阴性率 [9] [10] 。甲胎蛋白(AFP)是临床医生最常用的肝癌诊断的非侵入性生物标志物,也因其敏感性和特异性相对较低而限制了应用 [11] [12] [13] ,AFP高于20 ng/ml应进行检查排除肝癌,但其敏感性只有62.4%,特异性为89.4% [13] 。

随着分子生物学的不断发展,对高风险人群监测和早期诊断的技术也在不断更新。

外泌体(Exosome),是细胞内溶酶体微粒内陷形成的多囊泡体。与循环肿瘤细胞(circulating tumor cells, CTCs)和循环肿瘤DNA (circulating tumor DNA, ctDNA)共同作为液体活检技术最早应用的生物标志物 [14] [15] [16] 。外泌体性质稳定且广泛存在于各种体液中,故其可作为各种疾病早期诊断的生物标志物 [17] [18] 。作为细胞间信息传递与物质交换的载体,外泌体广泛存在于各类体液中,通过对肿瘤细胞分泌的外泌体提取与合成,可实现肿瘤的早期诊断与治疗。

作为常见的外泌体,miRNA是一种短非编码RNA,长度约为22个核苷酸。miRNA在特定疾病中的过表达和低表达使之可以成为疾病诊治的有效生物标志物。在肝癌发展的各个时期,miRNA呈现不同的表达。

本文将总结近年来miRNA在乙肝相关性肝癌和肝癌发生发展不同时期的表达特点,并介绍其在乙肝相关性肝癌和肝癌诊断和治疗中的进展。

2. miRNA与HBV相关性肝癌

2.1. miRNA在HBV相关性肝癌诊断中的作用

在HBV相关性肝癌细胞和组织中,miR-1271-5p呈低表达,因此,通过对细胞与组织中的miR-1271-5p检测,可实现对HBV相关性肝癌的早期诊断 [19] 。miR-768-3p在HBV相关肝癌中低表达,其高表达可抑制细胞增殖、迁移和侵袭,这说明miR-768-3p是HBV相关性肝癌的潜在诊断标志物 [20] 。miR-487b过表达与肿瘤淋巴结转移分期和巴塞罗那临床肝癌分期相关。Xiangang Cao等人的实验也证实miR-487b高表达可促进细胞增殖、迁移和侵袭 [21] 。Asahiro Morishita等人的研究表明:miR-210-3p是HBV相关性肝癌中唯一表达增强的miRNA且是关键生物标志物 [22] 。Li Zhao等人研究发现血清中高表达的miR-324-3p可能参与HBV相关性肝癌的进展 [23] 。因此,miR-487b、miR-210-3p和miR-324-3p均认为在HBV相关性肝癌诊断中具有较大潜力。

2.2. miRNA在HBV相关性肝癌鉴别诊断中的作用

对于鉴别肝癌是否由乙肝病毒感染进展导致,相关miRNA的研究也阐释了这个问题,比如:miR-487b在HBV导致的肝癌患者中的表达水平要远远高于其他病因来源及健康人,这奠定了miR-487b在肝癌病因的鉴别诊断中的价值 [24] 。miRNA-30b-5p在HBV相关性肝癌患者中的差异性表达使其可作为新型诊断生物标志物 [25] 。miR-222-3p在肝癌组织和细胞中呈高表达,但与其他原因导致的肝癌相比,其在HBV相关性肝癌中表达更高,这对于不同原因肝癌的鉴别诊断具有重要意义 [26] 。miR-93-5p用途更广,血液和尿液来源的miR-93-5p均可用于HBV相关性肝癌病例,且不受肿瘤分期的影响,对于HBV相关性肝癌的诊断,其敏感性超过85%,特异性超过93%,除此之外,miR-93-5p还可用于预测HBV相关性肝癌患者的预后 [27] 。

2.3. miRNA在HBV相关性肝癌治疗中的作用

2.3.1. miRNA与信号通路相关治疗靶点

MiR-520c-3p-PTEN促进EMT激活AKT-NFκB信号通路,导致HBV相关性肝癌进展,miR-520c-3p可调节HBV进展 [28] 。miR-1271-5p能抑制HBV诱导的肝癌,其机制是竞争性靶向水通道蛋白5 (AQP5) [19] 。miR-361通过NF-kappaBp65抑制HBV相关肝癌的进展 [29] 。miR-0308-3p作用于HBV相关性肝癌的机制是抑制CDK6和CyclinD1的表达,其高表达可抑制癌细胞的增殖,这对临床上新药物靶点的研发具有及其重要的意义 [30] 。FOXO1可促进肝癌细胞的生长、侵袭与转移,miR-374a/b-5p抑制HBV相关性肝癌细胞的凋亡则是通过对FOXO1的抑制来实现,通过此机制来实现对HBV相关性肝癌的诊治 [31] 。故通过对miR-520c-3p、miR-1271-5p、miR-361、miR-0308-3p、miR-374a/b-5p各自信号通路的调控来实现对肝癌诊治。

2.3.2. miRNA与乙型肝炎抗原相关治疗靶点

乙型肝炎核心抗原(HBc)通过囊泡相关膜蛋白2 (VAMP2)轴从而促进miR-135a-5p的产生,可使靶向药物的耐药性增加,Xiaocui Wei等人研究表明:miR-135a-5p/VAMP2调控轴可在HBV相关性肝癌的耐药性方面发挥作用,从而使其成为治疗靶点 [32] 。miR-203a被HBsAg抑制后促进肝癌的发展,导致预后不良,因此,miR-203a被认为是HBV相关性肝癌的关键治疗靶点,但目前缺乏动物实验验证 [33] 。

2.3.3. miRNA与抑制血管生成相关治疗靶点

缺氧诱导因子1 (FIH-1)具有抑制血管生成的作用,miR-3被乙肝病毒编码后,生成HBV-miR-3,该物质可以抑制FIH-1,从而促进血管生成,故miR-3可作为HBV相关性肝癌抗血管生成治疗的新靶点 [34] 。

2.3.4. miRNA受HBX作用后治疗靶点

miR-1236和miR-329在受到HBX干扰后的表达降低从而使AFP增加导致肝癌的发生,该机制的发现使得miR-1236和miR-329成为HBV相关性肝癌治疗的又一途径 [35] 。miR-155受HBX影响后呈高表达,加速肿瘤的恶性转化,研究发现其机制是PTEN/PI3K-AKT通路被抑制,因此,对miR-155的阻断是该类肿瘤治疗靶点的重要研究方向 [36] 。miR-187在受到HBX影响后促进肝癌进展,通过对miR-187相关轴的调控可实现对HBV相关性肝癌的诊治 [37] 。HBV感染诱导miR17-92和miR106b-25的表达增加,miR17-92/miR106b-25拮抗剂可作为抗肿瘤和抗病毒的双重策略 [38] 。

2.3.5. miRNA与HBV相关性肝癌其他治疗靶点

miR-124可以缓解肝炎病毒导致的肝坏死,但具体机制还不清楚,相关研究指出可能与miR-124降低白介素6 (IL-6)的表达有关,这意味着对于由乙型肝炎病毒相关的急性慢性肝衰竭,miR-124是极具潜力的治疗靶点 [39] 。miRNA-30b-5p被认为是糖酵解旁路增殖肿瘤细胞的刺激因子,从而导致HBV相关性肝癌,因此,其也是HBV相关性肝癌治疗的潜在药物靶点 [25] 。miR-3抑制HBV复制的机制是JAK/STAT信号通路的激活,使张力蛋白同源物(PTEN)上升,但是miR-3在受到HBV的影响后,会导致PTEN下降,从而有助于 HBV相关性肝癌的发展,这为miR-3作为HBV相关性肝癌治疗靶点开拓了思路 [40] [41] ,PTEN还是miR-181a/382/362/19a的靶标,因此,miR-181a/382/362/19a也是HBV相关性肝癌的潜在治疗靶点 [42] 。

miRNA-mRNA轴的研究也是HBV相关性肝癌治疗的方向 [43] [44] ,Danping Huang等人的研究确定Hsa-miR-195-5p/CDK1、has-miR-5589-3p/CCNB1和has-let-7c-3p/CKS2可作为HBV相关性肝癌生物标志物和治疗靶点 [44] 。

3. miRNA与肝癌

3.1. miRNA在肝癌诊断中的作用

3.1.1. miRNA相关检测技术的发展

MiRNA在肝癌早期诊断的相关研究早在10年前就吸引了众多研究者的兴趣,Jian Zhou等人开发了一种miRNA组合(miR-122、miR-192、miR-21、miR-223、miR-26a、miR-27a和miR-801),通过一系列试验验证,该组合对肝癌的诊断准确性很高 [45] 。近些年来,许多提高miRNA检测灵敏度的方法也层出不穷。比如,将单链DNA更换成支链DNA后,miRNA检测的灵敏度提高2个数量级 [46] ;仿生纳米通道在提高核酸灵敏度检测有巨大潜力,Siqi Zhang等人设计的纳米通道传感系统是通过级联INHIBIT-OR逻辑门来实现对miR-122和miRLet-7a的检测,很大程度上提高了检测的阈值 [47] 。Jiamin Wu等人通过SERS生物传感器使miRNA-122、miRNA-223、miRNA-21的检测值分别达到349 aM、374 aM和311 aM [48] 。我们团队通过熵驱动催化(EDC)助行器和智能响应DNAzymewalker的双助行器生物传感策略检测miRNA-21,可使检测限达到70 fM [49] 。

3.1.2. miRNA在肝癌诊断中的作用

甲胎蛋白(AFP)是目前临床上最常见的肝癌诊断标志物,但对于原发性肝癌的诊断来说,甲胎蛋白的敏感度相对较低,一部分原发性肝癌患者和转移性肝癌患者甲胎蛋白呈阴性,这让部分患者存在漏诊风险 [12] [13] 。miRNA的出现可以很好地解决该问题 [50] ,miR-21-5p在甲胎蛋白阴性的早期肝癌患者中呈现高表达,可作为其早期诊断标志物 [50] 。has-miR-21-5p/hsa-miR-199a-5p和has-miR-155-5p/hsa-miR-199a-5p比率也是这一类型肝癌潜在的生物标志物 [51] 。

miR-199a-3p在肝癌患者中呈现低表达,有研究表明其可以作为肝癌诊断标志物 [52] 。在早期肝癌患者血清中,miR-107表达显著增高,这提示miR-107在肝癌早期诊断方面具有极大潜力,但值得注意的是,miR-107与肿瘤分期分级无关 [53] 。竞争性内源性RNA (ceRNA)可作用于miR-23c,在肝癌细胞或组织中,ceRNA增高可使miR-23c表达下降,这说明miR-23c对于肝癌早期诊断具有较大潜能 [54] 。

相比单一miRNA对肝癌诊断来说,多miRNA组合、miRNA与AFP组合或者miRNA联合影像学方法会在一定程度上提高肝癌诊断的敏感性、特异性和准确性。有研究成果表明:单miR-21对肝癌诊断的敏感性、特异性和准确性分别为64.29%、87.00%和75.00%,但联合CT后对肝癌诊断的敏感性、准确率可提高至96.43%、88.68%,但特异性稍有下降,为80% [55] 。这预示这未来对于肝癌早期诊断的研究方向是多方法、多标志物组合的,单一方法或者单一标志物对于肝癌早期诊断在当前尚有挑战,当然,得益于分子生物学与液体活检技术的蓬勃发展,miRNA相关研究成果正在实现从实验室到临床应用的过渡阶段,相信在未来,单一miRNA对于特定肿瘤的早期诊断会真正运用于临床。

3.2. miRNA在肝癌治疗中的作用

3.2.1. miRNA在改善靶向药物疗效的作用

miR-3677-3p与FBXO31结合并抑制FBXO31表达被认为有助于HCC的发展和索拉非尼耐药性 [56] 。miR-20a抑制肝癌的增殖和转移的机制是miR-20a直接靶向组蛋白甲基转移酶EZH1,而UNC1999作为EZH1的抑制剂,可以增加肿瘤细胞对索拉非尼的敏感性,这不失为解决肝癌耐药性的方法 [57] 。miR-93在肝癌组织中为高表达,尤其是在顺铂或索拉非尼耐药的肝癌组织中,这是因为miR-93可调节肝脏的肿瘤起始细胞(T-IC),该细胞可被肌管蛋白相关蛋白3(MTMR3)的3'-UTR来调节,miR-93的干扰使肝癌细胞对顺铂或索拉非尼治疗敏感,这使得miR-93成为肝癌治疗的新靶点及TACE术后或者靶向药物的标志物 [58] 。

3.2.2. miRNA在调节肿瘤信号通路的作用

miR-155通过调控SRPK1在肝癌细胞的增殖与转移来抑制了肝癌细胞的发展 [59] 。miR-513b-5p抑制了肝癌的进展与转移则是通过靶向PIK3R3来实现的,因此,通过对miR-513b-5p的调节可实现对肝癌的治疗 [60] 。有动物实验表明:小鼠肝癌组织中的CREB5显著高表达,说明CREB5有致癌的性质,miR-206抑制肝癌发展的机制是抑制CREB5的表达和PI3K/AKT信号通路的激活,这为miR-206作为肝癌治疗靶点的研究提供了思路 [61] 。circ-ZEB1可使miR-199a-3p沉默,从而促进PIK3CA的表达,进一步促进肝癌的进展,因此还可以通过抑制circ-ZEB1来实现对肝癌的治疗 [52] 。

Xiaobo Nie等人的实验表明:miR-382-5p在肝癌组织中呈现高表达,其主要是在体外抑制NR1H4基因编码的法尼醇X受体(FXR)来促进肝癌细胞增殖,因此,miR-382-5p是肝癌治疗的重要靶点 [62] 。F-box和WD重复结构域7 (Fbxw7)是一种抑癌蛋白,miR-25通过抑制该蛋白来实现肝癌细胞的增殖、迁移和侵袭,从而达到肝癌治疗作用 [63] 。赖氨酸乙酰转移酶5 (KAT5)和含溴结构域8mRNA (BRD8mRNA)在肝癌组织中呈高表达,BRD8被miR-876-3p调控后通过调节KAT5抑制肝癌细胞发展,促进其凋亡,故miR-876-3p是肝癌治疗的重要靶点 [64] 。

3.2.3. miRNA在肝癌其他治疗靶点的作用

miR-342-3p在肝脏肿瘤中的表达呈现双相性,在肿瘤患者中呈低表达,但在肿瘤消退时呈高表达 [65] [66] [67] 。动物实验表明:腺相关病毒载体介导的miR-342-3p (AAV-miR-342-3p)的体内给药明显抑制肝脏肿瘤的发展并提高生存率,该项研究表面miR-342-3p在肝脏肿瘤治疗具有较大潜力 [66] 。miR-223抑制肝癌发展的机制是促使程序性细胞死亡1 (PD-1) T细胞和程序性细胞死亡配体1 (PD-L1)的激活,其关键作用靶点是调节缺氧诱导的肿瘤免疫抑制和血管生成,这预示着miR-223在未来极有可能成为肝癌新的治疗靶点 [68] 。染色体外环状DNA (eccDNA)被认为普遍存在于肝癌基因组中,最新研究对人HCC中的eccDNA进行了全面表征,结果显示:含有miRNA-17-92的eccRNA具有促进肿瘤进展的作用,这一结果对肝癌的发病机制及治疗的研究具有极大的推进作用 [69] 。

3.3. miRNA在肝癌预后中的作用

Heqing Huang等人的研究表明:与正常组织相比,miR-125b-2-3p在肝癌组织中呈现低表达,但miR-125b-2-3p下调却提示肝癌患者预后不良 [70] 。肝纤维化被认为是肝癌发展过程中的一个重要环节,miR-571的上调与Notch3和Jagged1的上调呈现正协同效应,促进肝纤维化的进展 [71] 。同样与纤维化有关的还有miR-150-3p,但其高表达是抑制肝癌迁移和侵袭性,只有当miR-150-3p在癌症相关成纤维细胞(CAFs)衍生的外泌体中降低时,才可导致肝癌的发展与复发 [72] 。miR-652-3p高表达促进肝癌细胞的发展、侵袭与转移,其被作为判断肝癌预后因素的指标 [73] 。细胞质多聚腺苷酸化元件结合蛋白3 (CPEB3)对肝癌细胞增殖、迁移和侵袭起抑制作用,miR-20b-5p过表达抑制了CPEB3的作用,从而促进了肿瘤的发展,通过对miR-20b-5p表达量的监测来评估患者的预后 [74] 。miR-638在肝癌患者中呈现高表达预示肿瘤复发,其机制是miR-638抑制VE-钙粘蛋白和ZO-1的表达导致内皮连接完整性被破坏 [75] 。

4. 总结与展望

外泌体miRNA在HBV相关性肝癌及肝癌的发病机制、疾病进展、疾病诊断、治疗与预后中发挥重要作用。miRNA具有高敏感性、高特异性、非侵入性的特点,易于被开展临床应用,较影像学检查,其可以更早得出诊断;较病理学活检,其对组织的损伤几乎可忽略不计;尤其是在对AFP阴性的病例更是突出了其优势。随着像RT-PCR、Westernblotting等技术的不断升级,对miRNA的提取与分离变得简便,更有利于miRNA相关研究的进行,除此之外,miRNA在人体内含量丰富,通过各种常见的体液即可获取。近年来,miRNA与miRNA、miRNA与其他外泌体,miRNA与现有方法的组合也受到研究者们的喜爱,使其对肝癌的发病因素、发病机制、诊断、治疗及预后等研究具有巨大的意义。综上,外泌体miRNA在肝癌的研究上具有不可替代的作用和不可估量的价值。

然而,miRNA的临床应用还有许多需要解决的问题。首先,外泌体miRNA是一个较大的概念且可通过不同的方法对其进行提取,目前并没有完整的规范与指南使其提取过程标准化,现有的研究很大一部分并没有说明提取的外泌体miRNA是由哪种体液提取,从而可能出现不同的方法对同一种miRNA的提取出现较大数据上的误差,不同体液来源的同种miRNA可能也会出现较大误差,而且miRNA提取过程相对复杂,对设备和检测技术的要求高。其次,已在研究的这些miRNA基本都面临着同一个问题,它们对于肿瘤细胞的出现绝大部分都很敏感,但特异度普遍偏低,在不同肿瘤的体液中,基本上都可检测到异常表达。除此之外,现阶段对miRNA确切致病机制并不是特别清楚且研究处于较初期的阶段,没有对患者的性别、年龄、地区等可能会影响miRNA表达量的因素标准化。最后,当前的研究基本都停留在实验室阶段,缺少临床数据的支持。

因此,未来需要我们对现阶段存在的各种问题一一完善。我们需要对miRNA相关的概念进行细化,对操作规范化,不断提高检测水平技术,开发出更好的检测方法和试剂。对同种疾病不同时期不同来源的miRNA分别进行研究,多种方法联合,多种miRNA联合,不断提高诊断效率与治疗效果,使其尽快转化成临床成果。

基金项目

四川省科学技术厅重点研发项目(2022YFS0201);四川省中医药管理局面上项目(2023MS637)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] European Association for the Study of the Liver and European Organisation for Research and Treatment of Cancer (2012) EASL-EORTC Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. Journal of Hepatology, 56, 908-943.
https://doi.org/10.1016/j.jhep.2011.12.001
[3] Galle, P.R., Forner, A., Llovet, J.M., et al. (2018) EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. Journal of Hepatology, 69, 182-236.
https://doi.org/10.1016/j.jhep.2018.03.019
[4] Kennedy, J.E., Wu, F., Ter, Haar, G.R., et al. (2004) High-Intensity Focused Ultrasound for the Treatment of Liver Tumours. Ultrasonics, 42, 931-935.
https://doi.org/10.1016/j.ultras.2004.01.089
[5] Cheung, T.T., Fan, S.T., Chan, S.C., et al. (2013) High-Intensity Focused Ultrasound Ablation: An Effective Bridging Therapy for Hepatocellular Carcinoma Patients. World Journal of Gastroenterology, 19, 3083-3089.
https://doi.org/10.3748/wjg.v19.i20.3083
[6] Cheung, T.T., Poon, R.T., Jenkins, C.R., et al. (2014) Survival Analysis of High-Intensity Focused Ultrasound Therapy vs. Transarterial Chemoembolization for Unresectable Hepatocellular Carcinomas. Liver International, 34, e136-e143.
https://doi.org/10.1111/liv.12474
[7] Ji, Y., Zhu, J., Zhu, L., et al. (2020) High-Intensity Focused Ultrasound Ablation for Unresectable Primary and Metastatic Liver Cancer: Real-World Research in a Chinese Tertiary Center with 275 Cases. Frontiers in Oncology, 10, Article 519164.
https://doi.org/10.3389/fonc.2020.519164
[8] Schraml, C., Kaufmann, S., Rempp, H., et al. (2015) Imaging of HCC-Current State of the Art. Diagnostics, 5, 513-545.
https://doi.org/10.3390/diagnostics5040513
[9] (2009) Pathologic Diagnosis of Early Hepatocellular Carcinoma: A Report of the International Consensus Group for Hepatocellular Neoplasia. Hepatology, 49, 658-664.
https://doi.org/10.1002/hep.22709
[10] Forner, A., Reig, M., Bruix, J. (2018) Hepatocellular Carcinoma. Lancet, 391, 1301-1314.
https://doi.org/10.1016/S0140-6736(18)30010-2
[11] Ahn, J.C., Teng, P.C., Chen, P.J., et al. (2021) Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology, 73, 422-436.
https://doi.org/10.1002/hep.31165
[12] Harris, P.S., Hansen, R.M., Gray, M.E., et al. (2019) Hepatocellular Carcinoma Surveillance: An Evidence-Based Approach. World Journal of Gastroenterology, 25, 1550-1559.
https://doi.org/10.3748/wjg.v25.i13.1550
[13] Trevisani, F., D’Intino, P.E., Morselli-Labate, A.M., et al. (2001) Serum α-Fetoprotein for Diagnosis of Hepatocellular Carcinoma in Patients with Chronic Liver Disease: Influence of HBsAg and Anti-HCV Status. Journal of Hepatology, 34, 570-575.
https://doi.org/10.1016/S0168-8278(00)00053-2
[14] Vaidyanathan, R., Soon, R.H., Zhang, P., et al. (2018) Cancer Diagnosis: From Tumor to Liquid Biopsy and Beyond. Lab on a Chip, 19, 11-34.
https://doi.org/10.1039/C8LC00684A
[15] Yu, W., Hurley, J., Roberts, D., et al. (2021) Exosome-Based Liquid Biopsies in Cancer: Opportunities and Challenges. Annals of Oncology, 32, 466-477.
https://doi.org/10.1016/j.annonc.2021.01.074
[16] Cai, X., Janku, F., Zhan, Q., et al. (2015) Accessing Genetic Information with Liquid Biopsies. Trends in Genetics, 31, 564-575.
https://doi.org/10.1016/j.tig.2015.06.001
[17] Zhu, Z., Wang, H., Pang, Y., et al. (2020) Exosomal Long Non-Coding RNA UCA1 Functions as Growth Inhibitor in Esophageal Cancer. Aging, 12, 20523-20539.
https://doi.org/10.18632/aging.103911
[18] Xu, M.L., Liu, T.C., Dong, F.X., et al. (2021) Exosomal LncRNA LINC01711 Facilitates Metastasis of Esophageal Squamous Cell Carcinoma via the MiR-326/FSCN1 Axis. Aging, 13, 19776-19788.
https://doi.org/10.18632/aging.203389
[19] Li, Z., Ma, L., Di, L., et al. (2021) MicroRNA‑1271‑5p Alleviates the Malignant Development of Hepatitis B Virus‑Mediated Liver Cancer via Binding to AQP5. Molecular Medicine Reports, 23, Article No. 386.
https://doi.org/10.3892/mmr.2021.12025
[20] Cao, C. and Wang, C. (2020) Clinical Significance of Serum MiR-768-3p in HBV-Related Hepatocellular Carcinoma and Its Potential Mechanism. Clinical and Experimental Medicine, 20, 569-576.
https://doi.org/10.1007/s10238-020-00646-z
[21] Cao, X., Yang, Q., Yu, Q. (2020) Increased Expression of MiR-487b Is Associated with Poor Prognosis and Tumor Progression of HBV-Related Hepatocellular Carcinoma. Open Forum Infectious Diseases, 7, ofaa498.
https://doi.org/10.1093/ofid/ofaa498
[22] Morishita, A., Fujita, K., Iwama, H., et al. (2020) Role of MicroRNA-210-3p in Hepatitis B Virus-Related Hepatocellular Carcinoma. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G401-G409.
https://doi.org/10.1152/ajpgi.00269.2019
[23] Zhao, L., Yang, Q. and Liu, J. (2021) Clinical Value Evaluation of MicroRNA-324-3p and Other Available Biomarkers in Patients with HBV Infection-Related Hepatocellular Carcinoma. Open Forum Infectious Diseases, 8, ofab108.
https://doi.org/10.1093/ofid/ofab108
[24] Li, X., Guo, Y., Wang, X., et al. (2021) Clinical Significance of Serum MiR-487b in HBV-Related Hepatocellular Carcinoma and Its Potential Mechanism. Infectious Diseases, 53, 546-554.
https://doi.org/10.1080/23744235.2021.1901981
[25] Chen, W., Jiang, J., Gong, L., et al. (2021) Hepatitis B Virus P Protein Initiates Glycolytic Bypass in HBV-Related Hepatocellular Carcinoma via A FOXO3/MiRNA-30b-5p/MINPP1 Axis. Journal of Experimental & Clinical Cancer Research, 40, Article No. 1.
https://doi.org/10.1186/s13046-020-01803-8
[26] Sun, Y., Shi, P., Wu, Q., et al. (2021) MiR-222-3p Induced by Hepatitis B Virus Promotes the Proliferation and Inhibits Apoptosis in Hepatocellular Carcinoma by Upregulating THBS1. Human Cell, 34, 1788-1799.
https://doi.org/10.1007/s13577-021-00577-1
[27] Zhou, G., Zeng, Y., Luo, Y., et al. (2022) Urine MiR-93-5p Is a Promising Biomarker for Early Detection of HBV-Related Hepatocellular Carcinoma. European Journal of Surgical Oncology, 48, 95-102.
https://doi.org/10.1016/j.ejso.2021.06.015
[28] Liu, Y., Wang, J., Chen, J., et al. (2022) Upregulation of MiR-520c-3p via Hepatitis B Virus Drives Hepatocellular Migration and Invasion by the PTEN/AKT/NF-κB Axis. Nucleic Acids, 29, 47-63.
https://doi.org/10.1016/j.omtn.2022.05.031
[29] Yu, G., Mu, H., Zhou, H., et al. (2021) MicroRNA-361 Suppresses the Biological Processes of Hepatic Stellate Cells in HBV-Relative Hepatic Fibrosis by NF-κB P65. Cells & Development, 167, Article ID: 203711.
https://doi.org/10.1016/j.cdev.2021.203711
[30] Dai, X., Huang, R., Hu, S., et al. (2020) A Novel MiR-0308-3p Revealed by MiRNA-Seq of HBV-Positive Hepatocellular Carcinoma Suppresses Cell Proliferation and Promotes G1/S Arrest by Targeting Double CDK6/Cyclin D1 Genes. Cell & Bioscience, 10, Article No. 24.
https://doi.org/10.1186/s13578-020-00382-7
[31] Wang, C., Su, K., Lin, H., et al. (2022) Identification and Verification of a Novel MAGI2-AS3/MiRNA-374-5p/FOXO1 Network Associated with HBV-Related HCC. Cells, 11, Article 3466.
https://doi.org/10.3390/cells11213466
[32] Wei, X.C., Xia, Y.R., Zhou, P., et al. (2021) Hepatitis B Core Antigen Modulates Exosomal MiR-135a to Target Vesicle-Associated Membrane Protein 2 Promoting Chemoresistance in Hepatocellular Carcinoma. World Journal of Gastroenterology, 27, 8302-8322.
https://doi.org/10.3748/wjg.v27.i48.8302
[33] Qin, Y.F., Zhou, Z.Y., Fu, H.W., et al. (2023) Hepatitis B Virus Surface Antigen Promotes Stemness of Hepatocellular Carcinoma through Regulating MicroRNA-203a. Journal of Clinical and Translational Hepatology, 11, 118-129.
[34] Chen, H., Cao, D., Han, N., et al. (2023) Hepatitis B Virus-Encoded MicroRNA (HBV-MiR-3) Inhibits FIH-1 Expression to Promote Tumor Angiogenesis in HBV-Related Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 10, 2337-2353.
https://doi.org/10.2147/JHC.S436926
[35] Zhang, C., Liu, P. and Zhang, C. (2020) Hepatitis B Virus X Protein Upregulates Alpha-Fetoprotein to Promote Hepatocellular Carcinoma by Targeting MiR-1236 and MiR-329. Journal of Cellular Biochemistry, 121, 2489-2499.
https://doi.org/10.1002/jcb.29471
[36] Niu, L.J., Huang, T., Wang, L., et al. (2022) HBX Suppresses PTEN to Promote the Malignant Progression of Hepatocellular Carcinoma through Mi-R155 Activation. Annals of Hepatology, 27, Article ID: 100688.
https://doi.org/10.1016/j.aohep.2022.100688
[37] Deng, Y., Wang, L., Zhang, Y., et al. (2023) HBx Promotes Hepatocellular Carcinoma Progression by Repressing the Transcription Level of MiR-187-5p. Aging, 15, 7533-7550.
https://doi.org/10.18632/aging.204921
[38] Mani, S., Yan, B., Cui, Z., et al. (2020) Restoration of RNA Helicase DDX5 Suppresses Hepatitis B Virus (HBV) Biosynthesis and Wnt Signaling in HBV-Related Hepatocellular Carcinoma. Theranostics, 10, 10957-10972.
https://doi.org/10.7150/thno.49629
[39] Wang, J., Zhang, X., Han, J., et al. (2023) MicroRNA-124 Expression in Kupffer Cells Modulates Liver Injury by Targeting IL-6/STAT3 Signaling. Antiviral Research, 211, Article ID: 105510.
https://doi.org/10.1016/j.antiviral.2022.105510
[40] Zhao, X., Sun, L., Mu, T., et al. (2020) An HBV-Encoded MiRNA Activates Innate Immunity to Restrict HBV Replication. Journal of Molecular Cell Biology, 12, 263-276.
https://doi.org/10.1093/jmcb/mjz104
[41] Tang, J., Xiao, X., Jiang, Y., et al. (2020) MiR-3 Encoded by Hepatitis B Virus Downregulates PTEN Protein Expression and Promotes Cell Proliferation. Journal of Hepatocellular Carcinoma, 7, 257-269.
https://doi.org/10.2147/JHC.S271091
[42] Ma, S., Qin, K., Ouyang, H., et al. (2020) HBV Infection Exacerbates PTEN Defects in Hepatocellular Carcinoma through Upregulation of MiR-181a/382/362/19a. American Journal of Translational Research, 12, 3780-3791.
[43] Lou, W., Liu, J., Ding, B., et al. (2019) Identification of Potential MiRNA-MRNA Regulatory Network Contributing to Pathogenesis of HBV-Related HCC. Journal of Translational Medicine, 17, Article No. 7.
https://doi.org/10.1186/s12967-018-1761-7
[44] Huang, D.P., Zeng, Y.H., Yuan, W.Q., et al. (2021) Bioinformatics Analyses of Potential MiRNA-MRNA Regulatory Axis in HBV-Related Hepatocellular Carcinoma. International Journal of Medical Sciences, 18, 335-346.
https://doi.org/10.7150/ijms.50126
[45] Zhou, J., Yu, L., Gao, X., et al. (2011) Plasma MicroRNA Panel to Diagnose Hepatitis B Virus-Related Hepatocellular Carcinoma. Journal of Clinical Oncology, 29, 4781-4788.
https://doi.org/10.1200/JCO.2011.38.2697
[46] Cheng, L., Zhang, Z., Zuo, D., et al. (2018) Ultrasensitive Detection of Serum MicroRNA Using Branched DNA-Based SERS Platform Combining Simultaneous Detection of α-Fetoprotein for Early Diagnosis of Liver Cancer. ACS Applied Materials & Interfaces, 10, 34869-34877.
https://doi.org/10.1021/acsami.8b10252
[47] Zhang, S., Cheng, J., Shi, W., et al. (2020) Fabrication of a Biomimetic Nanochannel Logic Platform and Its Applications in the Intelligent Detection of MiRNA Related to Liver Cancer. Analytical Chemistry, 92, 5952-5959.
https://doi.org/10.1021/acs.analchem.0c00147
[48] Wu, J., Zhou, X., Li, P., et al. (2021) Ultrasensitive and Simultaneous SERS Detection of Multiplex MicroRNA Using Fractal Gold Nanotags for Early Diagnosis and Prognosis of Hepatocellular Carcinoma. Analytical Chemistry, 93, 8799-8809.
https://doi.org/10.1021/acs.analchem.1c00478
[49] Fan, Z., Zhao, X., Dong, Y., et al. (2022) Protein-Free, Ultrasensitive MiRNA Analysis Based on an Entropy-Driven Catalytic Reaction Switched on a Smart-Responsive DNAzyme Dual-Walker Amplification Strategy. International Journal of Biological Macromolecules, 223, 931-938.
https://doi.org/10.1016/j.ijbiomac.2022.11.084
[50] Ghosh, S., Bhowmik, S., Majumdar, S., et al. (2020) the Exosome Encapsulated MicroRNAs as Circulating Diagnostic Marker for Hepatocellular Carcinoma with Low Alpha-Fetoprotein. International Journal of Cancer, 147, 2934-2947.
https://doi.org/10.1002/ijc.33111
[51] Eldosoky, M.A., Hammad, R., Elmadbouly, A.A., et al. (2023) Diagnostic Significance of Hsa-MiR-21-5p, Hsa-MiR-192-5p, Hsa-MiR-155-5p, Hsa-MiR-199a-5p Panel and Ratios in Hepatocellular Carcinoma on Top of Liver Cirrhosis in HCV-Infected Patients. International Journal of Molecular Sciences, 24, Article 3157.
https://doi.org/10.3390/ijms24043157
[52] Liu, W., Zheng, L., Zhang, R., et al. (2022) Circ-ZEB1 Promotes PIK3CA Expression by Silencing MiR-199a-3p and Affects the Proliferation and Apoptosis of Hepatocellular Carcinoma. Molecular Cancer, 21, Article No. 72.
https://doi.org/10.1186/s12943-022-01529-5
[53] Loosen, S.H., Castoldi, M., Jördens, M.S., et al. (2021) Serum Levels of Circulating MicroRNA-107 Are Elevated in Patients with Early-Stage HCC. PLOS ONE, 16, e247917.
https://doi.org/10.1371/journal.pone.0247917
[54] Xue, S., Lu, F., Sun, C., et al. (2021) LncRNA ZEB1-AS1 Regulates Hepatocellular Carcinoma Progression by Targeting MiR-23c. World Journal of Surgical Oncology, 19, Article No. 121.
https://doi.org/10.1186/s12957-021-02176-8
[55] Feng, Y.S., Zhou, J.M., Sun, C.H., et al. (2021) the Diagnostic Value of MiR-21 Combined with CT in Patients with Liver Cancer. Clinical and Translational Oncology, 23, 1238-1244.
https://doi.org/10.1007/s12094-020-02514-4
[56] He, H., Zhou, J., Cheng, F., et al. (2023) MiR-3677-3p Promotes Development and Sorafenib Resistance of Hepatitis B-Related Hepatocellular Carcinoma by Inhibiting FOXM1 Ubiquitination. Human Cell, 36, 1773-1789.
https://doi.org/10.1007/s13577-023-00945-z
[57] Zhang, Q., Deng, X., Tang, X., et al. (2021) MicroRNA-20a Suppresses Tumor Proliferation and Metastasis in Hepatocellular Carcinoma by Directly Targeting EZH1. Frontiers in Oncology, 11, Article 737986.
https://doi.org/10.3389/fonc.2021.737986
[58] Li, J., Zhong, X., Wang, X., et al. (2021) MiR-93 Regulates Liver Tumor Initiating Cells Expansion and Predicts Chemotherapeutic Response of Patients. Archives of Biochemistry and Biophysics, 703, Article ID: 108871.
https://doi.org/10.1016/j.abb.2021.108871
[59] Wang, Q., Wang, G.T. and Lu, W.H. (2021) MiR-155 Inhibits Malignant Biological Behavior of Human Liver Cancer Cells by Regulating SRPK1. Technology in Cancer Research & Treatment, 20.
https://doi.org/10.1177/1533033820957021
[60] Jin, W., Liang, Y., Li, S., et al. (2021) MiR-513b-5p Represses Autophagy during the Malignant Progression of Hepatocellular Carcinoma by Targeting PIK3R3. Aging, 13, 16072-16087.
https://doi.org/10.18632/aging.203135
[61] Chi, Y., Gong, Z., Xin, H., et al. (2022) MicroRNA-206 Prevents Hepatocellular Carcinoma Growth and Metastasis via Down-Regulating CREB5 and Inhibiting the PI3K/AKT Signaling Pathway. Cell Cycle, 21, 2651-2663.
https://doi.org/10.1080/15384101.2022.2108275
[62] Nie, X., Liu, H., Wei, X., et al. (2021) MiRNA-382-5p Suppresses the Expression of Farnesoid X Receptor to Promote Progression of Liver Cancer. er Management and Research, 13, 8025-8035.
https://doi.org/10.2147/CMAR.S324072
[63] El-Mezayen, H., Yamamura, K., Yusa, T., et al. (2021) MicroRNA-25 Exerts an Oncogenic Function by Regulating the Ubiquitin Ligase Fbxw7 in Hepatocellular Carcinoma. Annals of Surgical Oncology, 28, 7973-7982.
https://doi.org/10.1245/s10434-021-09778-2
[64] Yu, Z., Chen, T., Mo, H., et al. (2020) BRD8, Which Is Negatively Regulated by MiR-876-3p, Promotes the Proliferation and Apoptosis Resistance of Hepatocellular Carcinoma Cells via KAT5. Archives of Biochemistry and Biophysics, 693, Article ID: 108550.
https://doi.org/10.1016/j.abb.2020.108550
[65] Gao, Y., Zhang, S.G., Wang, Z.H., et al. (2017) Down-Regulation of MiR-342-3p in Hepatocellular Carcinoma Tissues and Its Prognostic Significance. European Review for Medical and Pharmacological Sciences, 21, 2098-2102.
[66] Komoll, R.M., Hu, Q., Olarewaju, O., et al. (2021) MicroRNA-342-3p Is A Potent Tumour Suppressor in Hepatocellular Carcinoma. Journal of Hepatology, 74, 122-134.
https://doi.org/10.1016/j.jhep.2020.07.039
[67] Xu, C., Sun, W., Liu, J., et al. (2022) MiR-342-3p Inhibits LCSC Oncogenicity and Cell Stemness through HDAC7/PTEN Axis. Inflammation Research, 71, 107-117.
https://doi.org/10.1007/s00011-021-01521-7
[68] Fu, Y., Mackowiak, B., Feng, D., et al. (2023) MicroRNA-223 Attenuates Hepatocarcinogenesis by Blocking Hypoxia-Driven Angiogenesis and Immunosuppression. Gut, 72, 1942-1958.
https://doi.org/10.1136/gutjnl-2022-327924
[69] Zou, S., Chen, S., Rao, G., et al. (2024) Extrachromosomal Circular MiR-17-92 Amplicon Promotes HCC. Hepatology, 79, 79-95.
https://doi.org/10.1097/HEP.0000000000000435
[70] Huang, H.Q., Chen, G., Xiong, D.D., et al. (2021) Down-Regulation of MicroRNA-125b-2-3p Is a Risk Factor for a Poor Prognosis in Hepatocellular Carcinoma. Bioengineered, 12, 1627-1641.
https://doi.org/10.1080/21655979.2021.1921549
[71] Cong, S., Liu, Y., Li, Y., et al. (2021) MiR-571 Affects the Development and Progression of Liver Fibrosis by Regulating the Notch3 Pathway. Scientific Reports, 11, Article No. 21854.
https://doi.org/10.1038/s41598-021-00638-3
[72] Yugawa, K., Yoshizumi, T., Mano, Y., et al. (2021) Cancer-Associated Fibroblasts Promote Hepatocellular Carcinoma Progression through Downregulation of Exosomal MiR-150-3p. European Journal of Surgical Oncology, 47, 384-393.
https://doi.org/10.1016/j.ejso.2020.08.002
[73] Chi, X., Jiang, Y., Chen, Y., et al. (2021) Upregulation of MicroRNA MiR-652-3p Is a Prognostic Risk Factor for Hepatocellular Carcinoma and Regulates Cell Proliferation, Migration, and Invasion. Bioengineered, 12, 7519-7528.
https://doi.org/10.1080/21655979.2021.1979861
[74] Li, Z., Wu, L., Tan, W., et al. (2021) MiR-20b-5p Promotes Hepatocellular Carcinoma Cell Proliferation, Migration and Invasion by Down-Regulating CPEB3. Annals of Hepatology, 23, Article ID: 100345.
https://doi.org/10.1016/j.aohep.2021.100345
[75] Yokota, Y., Noda, T., Okumura, Y., et al. (2021) Serum Exosomal MiR-638 Is a Prognostic Marker of HCC via Downregulation of VE-Cadherin and ZO-1 of Endothelial Cells. Cancer Science, 112, 1275-1288.
https://doi.org/10.1111/cas.14807