HMGCS2通过调节PPARγ参与溃疡性结肠炎的发生发展
HMGCS2 Is Involved in the Development of Ulcerative Colitis by Regulating PPARγ
DOI: 10.12677/acm.2024.1451533, PDF, HTML, XML, 下载: 56  浏览: 102  科研立项经费支持
作者: 闫 静, 李 康:锦州医科大学研究生培养基地临沂市人民医院,山东 临沂;杜 超*:临沂市人民医院消化内科,山东 临沂
关键词: 溃疡性结肠炎HMGCS2PPARγ肠上皮细胞炎症细胞因子Ulcerative Colitis HMGCS2 PPARγ Intestinal Epithelial Cells Inflammatory Cytokines
摘要: 目的:探讨3-羟基-3甲基戊二酰辅酶A合酶2 (HMGCS2)通过调节过氧化物酶体增殖物激活受体γ (PPARγ)对溃疡性结肠炎(UC)发生发展的影响。方法:免疫组织化学染色检测HMGCS2蛋白在正常和UC肠道组织的表达。体外培养Caco2和HT29细胞,构建HMGCS2敲低慢病毒载体,分别转染两株细胞后得到sh-NC组、sh-HMGCS2-1组、sh-HMGCS2-2组和sh-HMGCS2-3组。通过Western Blot检测各组细胞过氧化物酶体增殖体激活受体γ (PPARγ)、信号转导和转录激活因子1 (STAT1)、信号转导和转录激活因子3 (STAT3)的蛋白表达。实时荧光定量PCR检测肿瘤坏死因子(TNF-α)、白细胞介素1β (IL-1β)、白细胞介素6 (IL-6) mRNA的表达。结果:与正常肠道组织相比,UC肠道组织中HMGCS2表达水平显著降低(P < 0.05)。与sh-NC相比,sh-HMGCS2组中炎症细胞因子IL-1β、IL-6和TNF-α的mRNA表达水平明显升高(P < 0.05);PPARγ蛋白表达水平降低(P < 0.05);STAT1、STAT3蛋白表达水平无统计学差异(P > 0.05)。结论:HMGCS2可能通过调控PPARγ减弱肠上皮细胞炎症反应,参与UC的发生发展。
Abstract: Objective: To investigate the effect of 3-hydroxy-3-methylglutaryl-CoA synthetase 2 (HMGCS2) on the progression of ulcerative colitis (UC) by regulating peroxisome proliferator-activated receptor γ (PPARγ). Methods: The expression of HMGCS2 protein in normal and UC intestinal tissues was detected by immunohistochemical staining. Caco2 and HT29 cells were cultured, and HMGCS2 knockdown lentiviral vectors were constructed to obtain sh-NC group, sh-HMGCS2-1 group, sh-HMGCS2-2 group, and sh-HMGCS2-3 group of the two strains of cells respectively. Western Blot was used to detect the protein expression of PPARγ, signal transducer and activator of transcription 1 (STAT1) and signal transducer and activator of transcription 3 (STAT3) in each group. The mRNA expressions of tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were detected by real-time fluorescence quantitative PCR. Results: Compared with normal intestinal tissues, the expression level of HMGCS2 in UC intestinal tissues was significantly reduced (P < 0.05). Compared with sh-NC, the mRNA expression levels of inflammatory cytokines IL-1β, IL-6 and TNF-α were significantly higher in the sh-HMGCS2 groups (P < 0.05); the expression level of PPARγ protein was reduced (P < 0.05), while the differences in the expression levels of STAT1 and STAT3 proteins were not statistically significant (P > 0.05). Conclusion: HMGCS2 may attenuate the inflammatory response of intestinal epithelial cells by regulating PPARγ, and participate in the occurrence and development of UC.
文章引用:闫静, 李康, 杜超. HMGCS2通过调节PPARγ参与溃疡性结肠炎的发生发展[J]. 临床医学进展, 2024, 14(5): 1115-1124. https://doi.org/10.12677/acm.2024.1451533

1. 引言

溃疡性结肠炎(ulcerative colitis, UC)是一种反复发作的,主要侵及结肠黏膜的慢性非特异性炎性疾病,发病率呈逐年增高趋势 [1] [2] 。许多细胞因子通过其促炎作用在UC中发挥关键作用,包括IL-1、IL-6、TNF-α [3] 。研究表明,3-羟基-3-甲基戊二酰辅酶A合酶2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2, HMGCS2)可作为一种内源性保护机制,减弱TNFα诱导的肠上皮细胞炎症反应 [4] [5] 。Zhao等通过生信分析发现HMGCS2是UC发病的核心基因之一,并通过构建小鼠模型验证HMGCS2在UC中表达显著降低 [6] 。然而,目前尚无HMGCS2在UC中的进一步机制研究。过氧化物酶体增殖物激活受体γ (peroxisome proliferator-activated receptor gamma, PPARγ)属于核激素受体超家族 [7] ,在结肠上皮细胞、巨噬细胞等均有表达,主要参与炎症细胞因子的表达调节 [8] [9] [10] ;此外,信号转导和转录激活因子(signal transducer and activator of transcription, STAT)通路的持续激活参与许多炎症性疾病(包括UC)的发生发展 [11] [12] 。然而,HMGCS2是否通过调控PPARγ/STAT减弱肠上皮细胞炎症反应参与UC的发生发展,尚无研究报道。本研究通过免疫组化检测UC患者HMGCS2表达和细胞系体外实验,探究HMGCS2参与UC炎症发生发展的机制。

2. 资料与方法

2.1. 材料

1) 标本来源:收集2019年6月至2023年6月临沂市人民医院经结肠镜检查联合病理学活检证实的溃疡性结肠炎组织标本51例,其中男33例,女18例,年龄18~75岁,平均(48.6 ± 17.0)岁。诊断参照2018年中华医学会消化病学分会诊断标准 [13] 。另收集同期32例正常肠道组织标本为对照组,男22例,女10例,年龄18~75岁,平均(49.7 ± 14.0)岁。上述2组组织均用10%福尔马林固定,石蜡包埋、切片。本研究通过临沂市人民医院医学伦理委员会批准(审批号:YX200563)。

2) 主要试剂与仪器人结肠癌细胞系Caco2、HT29购自武汉普诺赛生命科技有限公司;胎牛血清(FBS)购自澳大利亚Invigentech公司;Dulbecco’s Modified Eagle’s Medium (DMEM)培养基、青链霉素、嘌呤霉素、BCA蛋白浓度测定试剂盒均购自北京索莱宝科技有限公司;McCoy’s 5A培养基购自武汉普诺赛生命科技有限公司;蛋白提取试剂盒、Western一抗稀释液、二抗稀释液购自中国碧云天公司;HMGCS2敲低慢病毒载体购自上海吉凯基因公司;HMGCS2抗体购自英国Abcam公司;GAPDH、STAT1、STAT3一抗和山羊抗兔IgG二抗、山羊抗鼠IgG二抗购自杭州华安生物技术有限公司;PPARγ抗体购自武汉Proteintech公司;TRIzol试剂购自Invitrogen公司;反转录试剂盒和qPCR试剂盒购自湖南艾科瑞生物公司;TNF-α、IL-1β、IL-6引物购自上海捷瑞生物公司。生物安全柜购自香港Heal Force公司;荧光倒置显微镜购自日本Nikon公司;高速低温离心机购自美国Thermo公司;多功能酶标仪购自美国Thermo公司;超声波破碎仪购自美国Millipor公司;显影仪购自美国Bio-Rad公司;PCR扩增仪购自美国Bio-Rad公司;7500 Real-time PCR仪购自美国ABI公司。

2.2. 方法

1) 免疫组织化学染色检测HMGCS2蛋白的表达取石蜡包埋的肠道组织,4 um厚度切片,70℃烘烤60 min,依次放入二甲苯和梯度乙醇进行水化。切片用磷酸盐缓冲液(PBS)洗涤3次以修复抗原,然后用3%过氧化氢室温孵育25 min,阻断内源性过氧化物酶。5%牛血清白蛋白(BSA)室温下封闭30分钟。将切片与HMGCS2 (1:200稀释,Abcam)在4℃下孵育过夜。PBS洗涤3次,与二抗室温孵育30 min。用DAB显色后,苏木精复染细胞核,乙醇脱水,清除二甲苯,光学显微镜下观察及拍片。根据染色强度(阴性 = 0分,弱 = 1分,中等 = 2分,强 = 3分)和阳性染色面积比例(0%~10% = 0分,11%~50% = 1分,51%~75% = 2分,76%~100% = 3分)对HMGCS2反应进行评分。HMGCS2表达评分为染色强度评分乘以染色阳性面积百分比评分。0~2分为低表达,3~9分为高表达。

2) 细胞培养:Caco2和HT29细胞分别在添加10%胎牛血清和1%青链霉素混合液的DMEM和McCoy’s 5A中进行培养。细胞在37℃含有5% CO2加湿培养箱中继续培养。待细胞融合率达70%~80%时,使用胰蛋白酶按照1:2的比例进行细胞传代,细胞培养至第3~8代用于后续实验。

3) 细胞转染和处理:收集对数生长期的Caco2和HT29细胞,分别用完全培养基制备密度为2 × 105个/ml细胞悬液,转移至6孔板中,接种体积为2 ml,之后将6孔板放入细胞培养箱中培养16~24 h,至细胞汇合度为20%~30%。将6孔板中旧液弃掉,加入1 ml新鲜的完全培养基。然后依次加入慢病毒(一组对照和三组HMGCS2敲低)和相应的病毒感染增强液,“8”字摇匀,放入培养箱中继续培养。感染后16 h用完全培养基进行换液。感染后约72 h后,镜下观察感染效率,分别更换含有5 ug/ml and 8 ug/ml嘌呤霉素的完全培养基继续培养。待第七天,将6孔板中细胞转移至细胞培养瓶中。分别得到了sh-NC组、sh-HMGCS2-1组、sh-HMGCS2-2组和sh-HMGCS2-3组细胞。

4) Western Blot检测目的蛋白表达收集对数生长期的sh-NC组、sh-HMGCS2-1组、sh-HMGCS2-2组、sh-HMGCS2-3组细胞,弃培养基,用预冷的PBS洗涤细胞3次,加入细胞裂解液(含有1 ml冷裂解液、10 ul蛋白酶抑制剂、磷酸酶抑制剂和PMSF)。收集细胞悬液,吹打混匀,低温震荡裂解20~30 min,然后4℃离心机12,000 rpm离心30 min。将上清液移入新的EP管中,BCA法检测蛋白浓度。所有样品中的蛋白质量归一化为30 µg。样品通过SDS-PAGE电泳后转移至PVDF膜上,将膜用5%脱脂牛奶室温封闭1.5 h,然后用不同的一抗(兔源GAPDH 1:5000;兔源HMGCS2 1:1000;鼠源PPARγ 1:5000;兔源STAT1 1:1000;兔源STAT3 1:2000)在4℃下孵育过夜。TBST洗涤后,二抗(山羊抗兔IgG二抗1:5000;山羊抗鼠IgG二抗1:5000)室温下孵育1.5 h。TBST洗膜3次后,使用增强化学发光(ECL)检测试剂对条带进行可视化。重复3次,使用ImageJ软件对图像进行量化。

5) 实时荧光定量PCR (qPCR)检测目的基因mRNA表达:收集对数生长期的sh-NC组、sh-HMGCS2-1组、sh-HMGCS2-2组、sh-HMGCS2-3组细胞,弃培养基,用预冷的PBS洗涤细胞3次后置于冰上,用Trizol试剂提取总RNA。使用反转录试剂盒合成cDNA。反应体系(20 ul):5 × Evo M-MLVRT Master Mix 4 ul,Total RNA 1000/RNA测定浓度,RNase free water Up to 20 ul。反应条件:95℃预变性30 s,95℃变性5 s,60℃退火30 s,一共40个循环。使用qPCR试剂盒进行实时荧光定量PCR。以GAPDH为内参,重复实验3次,采用2−ΔΔCt法计算mRNA相对表达。引物序列见表1

Table 1. Primer sequences

表1. 引物序列

6) 统计学方法:所有统计分析均采用GraphPad Prism 6.0软件,计量资料以 x ¯ ± s 表示。统计学比较采用单因素方差分析来检验多组数据之间的差异性,两组间比较采用两独立样本t检验,P < 0.05认为差异有统计学意义。

3. 结果

3.1. HMGCS2在溃疡性结肠炎组织中表达情况

免疫组化染色结果显示正常肠上皮呈强烈的HMGCS2染色,而溃疡性结肠炎患者结肠黏膜显示阴性或相对轻微的染色(P < 0.001),见图1

3.2. HMGCS2稳定敲低细胞系的建立

Western blotting结果显示,在Caco2和HT29细胞中,与NC组相比,sh-HMGCS2-1组、sh-HMGCS2-2组和sh-HMGCS2-3组中HMGCS2蛋白表达水平降低(P < 0.05),见图4。qPCR结果显示,在Caco2和HT29细胞中,与NC组相比,sh-HMGCS2-1组、sh-HMGCS2-2组和sh-HMGCS2-3组HMGCS2的mRNA表达水平降低(P < 0.05)见图2。这些数据表明成功建立了HMGCS2敲低细胞系。

(a) (b)(a):正常和UC组织(200倍和400倍)中HMGCS2表达的免疫组织化学(IHC)染色;(b):IHC评分:根据阳性染色面积比例与染色强度相乘计算

Figure 1. The expression of HMGCS2 in normal and UC tissues was detected by IHC

图1. IHC检测正常和UC组织中HMGCS2的表达

(a) (b)

Figure 2. HMGCS2 mRNA expression levels in the sh-NC, sh-HMGCS2-1, sh-HMGCS2-2, and sh-HMGCS2-3 groups in Caco2 and HT29 cells

图2. Caco2和HT29细胞中sh-NC组、sh-HMGCS2-1组、sh-HMGCS2-2组和sh-HMGCS2-3组HMGCS2 mRNA表达水平

3.3. HMGCS2表达下调对IL-1β、IL-6和TNF-α的影响

qPCR结果显示,在Caco2和HT29细胞中,与NC组相比,下调HMGCS2表达后炎症细胞因子IL-1β、IL-6和TNF-α的mRNA表达水平明显升高(P < 0.05),见图3

3.4. HMGCS2表达下调对PPARγ、STAT1和STAT3的影响

Western blot结果显示,在Caco2和HT29细胞中,与NC组相比,下调HMGCS2表达后PPARγ蛋白表达水平降低(P < 0.05);STAT1、STAT3蛋白表达水平差异无统计学意义(P > 0.05),见图4

(a)(b)

Figure 3. Effect of HMGCS2 knockdown on inflammatory cytokines

图3. 敲低HMGCS2对炎症细胞因子的影响

Figure 4. Western blot detection of HMGCS2, PPARγ, STAT1, STAT3 protein expression and quantitative analysis in Caco2 and HT29 cells

图4. Western blot检测Caco2和HT29细胞中HMGCS2、PPARγ、STAT1和STAT3蛋白表达及定量分析

4. 讨论

溃疡性结肠炎是一种病因不明的慢性肠道炎症性疾病,病程较长,病情易反复 [14] 。主要表现为肠道内稳态失衡,其特征是黏膜免疫系统不受控制的炎症和异常激活。UC的治疗以控制肠道炎症反应为策略,主要治疗目标诱导并保持缓解,避免疾病的活动和复发 [15] 。目前,UC的治疗药物主要包括氨基水杨酸类、激素、免疫抑制剂和生物制剂等,可部分患者在临床治疗中仍然存在病情难以缓解,反复复发,迁延不愈 [16] [17] 。近年来,人们对寻找在UC的发生和发展中起关键作用的新基因越来越感兴趣。HMGCS2属于HMG-CoA合成酶家族,主要在胃肠道和肝脏中表达,特别是在顶端结肠细胞中,肠道中HMGCS2有助于维持肠道稳态 [18] 。本研究结果显示,HMGCS2在溃疡性结肠炎组织中显著降低,在Caco2和HT29细胞中敲低HMGCS2,可引起PPARγ蛋白表达下调,炎症因子IL-1β、IL-6和TNF-α的mRNA表达水平升高,这些结果表明HMGCS2可能通过调节PPARγ参与溃疡性结肠炎的发生发展。

有研究表明,HMGCS2在UC进展中起到重要作用,它与单核细胞和巨噬细胞均有不同程度的相关性 [6] 。单核细胞和巨噬细胞的激活,经过一系列级联反应可以释放IL-6和TNF-α等炎症细胞因子,进一步引起各种趋化因子以及细胞毒性氧化剂的释放 [19] 。TNF-α主要与内皮细胞通透性增加、白细胞生成和前列腺素水平升高相关。另有研究显示UC患者的血液、粪便样本和黏膜中TNF-α均有升高 [20] 。这些发现证实了TNF-α在UC发病机制中的重要性。此外Beatriz [21] 等研究发现在内质网应激的存在下,HMGCS2的下调可使肠上皮细胞(Intestinal epithelial cells, IECs)的炎症反应被显著放大。IECs的损伤及功能失衡可增加肠道通透性,导致IECs与固有层中免疫细胞之间的相互作用异常,并干扰肠道免疫稳态 [22] [23] ,所有这些都与UC的临床病程有关。本研究结果显示HMGCS2在溃疡性结肠炎患者结肠黏膜中显著下调,在Caco2和HT29细胞中稳定敲低HMGCS2,可以促进炎症细胞因子IL-1β、IL-6和TNF-α的释放,与上述研究一致。这些结果均表明UC是一种不断恶化的炎症性疾病,其特征是肠黏膜免疫系统失衡,包括免疫反应失调和炎症细胞因子释放失衡。因此,本研究继续探讨了HMGCS2和这些炎症细胞因子之间的相关通路机制。

PPARγ是脂质和糖代谢的关键调节因子,也可以作为一种免疫调节剂,抑制炎症因子,在巨噬细胞和淋巴细胞中已经得到证实 [24] [25] 。也有研究表明,对PPARγ的抑制可以导致许多病理状况,比如炎症,此外,PPARγ激动剂可诱导抗炎反应 [26] [27] 。为进一步探究HMGCS2介导的炎症通路相关机制,本研究通过Western Blot分析发现稳定敲低HMGCS2后,PPARγ蛋白在肠细胞中的表达下调。因此,HMGCS2可能通过调控PPARγ抑制肠上皮细胞炎性细胞因子的释放,达到抑炎的作用。这与Kim等 [5] 研究一致,下调PPARγ可以促进TNF-α诱导的肠上皮细胞炎症反应。

STAT是由细胞因子调节的主要信号通路,对于启动先天免疫、协调适应性免疫机制以及最终抑制炎症和免疫反应至关重要。有数据报导称炎症性肠病患者中STAT1的表达和激活都增加,总STAT1水平高于对照组 [28] 。此外在一项动物研究中发现,STAT1也加剧了野生型小鼠DSS诱导的结肠炎 [29] 。与STAT1相似,一些研究也报道了磷酸化的STAT3在炎症性肠病患者中表达增加 [30] [31] 。此外,在结肠炎模型小鼠中也支持STAT3的致病作用 [31] 。为了探究STAT1和STAT3是否与HMGCS2介导的炎症通路相关,本研究通过Western Blot分析发现稳定敲低HMGCS2后,STAT1、STAT3蛋白表达水平差异无统计学意义。因此,HMGCS2可能通过调控PPARγ而非STAT1和STAT3信号通路而抑制肠上皮细胞炎症,参与UC的发生发展。

5. 结论

综上所述,HMGCS2表达下调可诱导溃疡性结肠炎的发生发展,其作为PPARγ的上游调节剂,可以激活PPARγ抑制UC的炎症反应,且STAT1、STAT3与此过程无直接联系。但是本研究仅仅通过体外细胞实验研究,未经过动物实验验证。后续将继续通过建立结肠炎模型小鼠深入探究HMGCS2在UC发病机制中的作用,为UC的靶向治疗提供新的方向。

基金项目

山东省自然科学基金面上项目(ZR2021MH183)。

NOTES

*通讯作者。

参考文献

[1] Gros, B. and Kaplan, G.G. (2023) Ulcerative Colitis in Adults: A Review. JAMA, 330, 951-965.
https://doi.org/10.1001/jama.2023.15389
[2] Low, E.N.D., Mokhtar, N.M., Wong, Z., et al. (2019) Colonic Mucosal Transcriptomic Changes in Patients with Long-Duration Ulcerative Colitis Revealed Colitis-Associated Cancer Pathways. Journal of Crohns and Colitis, 13, 755-763.
https://doi.org/10.1093/ecco-jcc/jjz002
[3] Xin, P., Xu, X., Deng, C., et al. (2020) The Role of JAK/STAT Signaling Pathway and Its Inhibitors in Diseases. International Immunopharmacology, 80, Article ID: 106210.
https://doi.org/10.1016/j.intimp.2020.106210
[4] Pedersen, J., Coskun, M., Soendergaard, C., et al. (2014) Inflammatory Pathways of Importance for Management of Inflammatory Bowel Disease. World Journal of Gastroenterology, 20, 64-77.
https://doi.org/10.3748/wjg.v20.i1.64
[5] Kim, J.T., Napier, D.L., Kim, J., et al. (2021) Ketogenesis Alleviates TNFα-Induced Apoptosis and Inflammatory Responses in Intestinal Cells. Free Radical Biology and Medicine, 172, 90-100.
https://doi.org/10.1016/j.freeradbiomed.2021.05.032
[6] Zhao, D., Qin, D., Yin, L., et al. (2023) Integrated Bioinformatics Analysis and Experimental Verification of Immune Cell Infiltration and the Related Core Genes in Ulcerative Colitis. Pharmacogenomics and Personalized Medicine, 16, 629-643.
https://doi.org/10.2147/PGPM.S406644
[7] Tontonoz, P. and Spiegelman, B.M. (2008) Fat and Beyond: The Diverse Biology of PPARγ. Annual Review of Biochemistry, 77, 289-312.
https://doi.org/10.1146/annurev.biochem.77.061307.091829
[8] Ricote, M., Huang, J., Fajas, L., et al. (1998) Expression of The Peroxisome Proliferator-Activated Receptor γ (PPARgamma) in Human Atherosclerosis and Regulation in Macrophages by Colony Stimulating Factors and Oxidized Low Density Lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 95, 7614-7619.
https://doi.org/10.1073/pnas.95.13.7614
[9] Lefebvre, M., Paulweber, B., Fajas, L., et al. (1999) Peroxisome Proliferator-Activated Receptor γ Is Induced During Differentiation of Colon Epithelium Cells. Journal of Endocrinology, 162, 331-340.
https://doi.org/10.1677/joe.0.1620331
[10] Clark, R.B., Bishop-Bailey, D., Estrada-Hernandez, T., et al. (2000) The Nuclear Receptor PPAR γ and Immunoregulation: PPAR γ Mediates Inhibition of Helper T Cell Responses. The Journal of Immunology, 164, 1364-1371.
https://doi.org/10.4049/jimmunol.164.3.1364
[11] Cordes, F., Foell, D., Ding, J.N., et al. (2020) Differential Regulation of JAK/STAT-Signaling in Patients with Ulcerative Colitis and Crohn’s Disease. World Journal of Gastroenterology, 26, 4055-4075.
https://doi.org/10.3748/wjg.v26.i28.4055
[12] Caiazzo, G., Caiazzo, A., Napolitano, M., et al. (2023) The Use of JAK/STAT Inhibitors in Chronic Inflammatory Disorders. Journal of Clinical Medicine, 12, Article 2865.
https://doi.org/10.3390/jcm12082865
[13] 吴开春, 梁洁, 冉志华, 等. 炎症性肠病诊断与治疗的共识意见(2018年∙北京) [J]. 中国实用内科杂志, 2018, 38(9): 796813.
[14] Le Berre, C., Honap, S. and Peyrin-Biroulet, L. (2023) Ulcerative Colitis. Lancet, 402, 571-584.
https://doi.org/10.1016/S0140-6736(23)00966-2
[15] Ungaro, R., Colombel, J.F., Lissoos, T., et al. (2019) A Treat-to-Target Update in Ulcerative Colitis: A Systematic Review. The American Journal of Gastroenterology, 114, 874-883.
https://doi.org/10.14309/ajg.0000000000000183
[16] Ordás, I., Eckmann, L., Talamini, M., et al. (2012) Ulcerative Colitis. Lancet, 380, 1606-1619.
https://doi.org/10.1016/S0140-6736(12)60150-0
[17] Leikin, J.B. (2019) A Comprehensive Review and Update on Ulcerative Colitis Foreword. Disease-a-Month, 65, Article ID: 100852.
https://doi.org/10.1016/j.disamonth.2019.02.005
[18] Kim, J.T., Li, C., Weiss, H.L., et al. (2019) Regulation of Ketogenic Enzyme HMGCS2 by Wnt/β-Catenin/PPARγ Pathway in Intestinal Cells. Cells, 8, Article 1106.
https://doi.org/10.3390/cells8091106
[19] Fournier, B.M. and Parkos, C.A. (2012) The Role of Neutrophils during Intestinal Inflammation. Mucosal Immunology, 5, 354-366.
https://doi.org/10.1038/mi.2012.24
[20] Souza, R.F., Caetano, M.A, F., Magalhães, H.I, R., et al. (2023) Study of Tumor Necrosis Factor Receptor in the Inflammatory Bowel Disease. World Journal of Gastroenterology, 29, 2733-2746.
https://doi.org/10.3748/wjg.v29.i18.2733
[21] Martín-Adrados, B., Wculek, S.K., Fernández-Bravo, S., et al. (2023) Expression of HMGCS2 in Intestinal Epithelial Cells Is Downregulated in Inflammatory Bowel Disease Associated with Endoplasmic Reticulum Stress. Frontiers in Immunology, 14, Article 1185517.
https://doi.org/10.3389/fimmu.2023.1185517
[22] Kaur, A. and Goggolidou, P. (2020) Ulcerative Colitis: Understanding Its Cellular Pathology Could Provide Insights Into Novel Therapies. Journal of Inflammation, 17, Article No. 15.
https://doi.org/10.1186/s12950-020-00246-4
[23] Haberman, Y., Karns, R., Dexheimer, P.J., et al. (2019) Ulcerative Colitis Mucosal Transcriptomes Reveal Mitochondriopathy and Personalized Mechanisms Underlying Disease Severity and Treatment Response. Nature Communications, 10, Article No. 38.
https://doi.org/10.1038/s41467-018-07841-3
[24] Welch, J.S., Ricote, M., Akiyama, T.E., et al. (2003) PPARγ and PPARδ Negatively Regulate Specific Subsets of Lipopolysaccharide and IFN-γ Target Genes in Macrophages. Proceedings of the National Academy of Sciences of the United States of America, 100, 6712-6717.
https://doi.org/10.1073/pnas.1031789100
[25] Jiang, C., Ting, A.T. and Seed, B. (1998) PPAR-γ Agonists Inhibit Production of Monocyte Inflammatory Cytokines. Nature, 391, 82-86.
https://doi.org/10.1038/34184
[26] Vetuschi, A., Pompili, S., Gaudio, E., et al. (2018) PPAR-γ with Its Anti-Inflammatory and Anti-Fibrotic Action Could Be an Effective Therapeutic Target in IBD. European Review for Medical and Pharmacological Sciences, 22, 8839-8848.
[27] Decara, J., Rivera, P., López-Gambero, A.J., et al. (2020) Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Frontiers in Pharmacology, 11, Article 730.
https://doi.org/10.3389/fphar.2020.00730
[28] Mudter, J., Weigmann, B., Bartsch, B., et al. (2005) Activation Pattern of Signal Transducers and Activators of Transcription (STAT) Factors in Inflammatory Bowel Diseases. American Journal of Gastroenterology, 100, 64-72.
https://doi.org/10.1111/j.1572-0241.2005.40615.x
[29] Bandyopadhyay, S.K., De La Motte, C.A., Kessler, S.P., et al. (2008) Hyaluronan-Mediated Leukocyte Adhesion and Dextran Sulfate Sodium-Induced Colitis Are Attenuated in the Absence of Signal Transducer and Activator of Transcription 1. The American Journal of Pathology, 173, 1361-1368.
https://doi.org/10.2353/ajpath.2008.080444
[30] Wu, F., Dassopoulos, T., Cope, L., et al. (2007) Genome-Wide Gene Expression Differences in Crohn’s Disease and Ulcerative Colitis from Endoscopic Pinch Biopsies: Insights into Distinctive Pathogenesis. Inflammatory Bowel Diseases, 13, 807-821.
https://doi.org/10.1002/ibd.20110
[31] Suzuki, A., Hanada, T., Mitsuyama, K., et al. (2001) CIS3/SOCS3/SSI3 Plays a Negative Regulatory Role in STAT3 Activation and Intestinal Inflammation. Journal of Experimental Medicine, 193, 471-481.
https://doi.org/10.1084/jem.193.4.471