靶向调控毛囊干细胞功能治疗雄激素脱发的研究进展
Research Progress on Targeted Regulation of Hair Follicle Stem Cell Function in the Treatment of Androgenetic Alopecia
摘要: 雄激素脱发(androgenetic alopecia, AGA)是一种最常见的脱发类型。通过靶向调控毛囊干细胞功能改善AGA是近年来的研究热点,毛囊干细胞在调节毛囊周期生长中起着至关重要的作用,具体调控策略包括:调节毛囊干细胞微环境、干预信号传导与生长因子表达等。本篇综述基于AGA的发病机制,总结了近年来靶向调控毛囊干细胞治疗AGA的相关研究,讨论了此种策略对于治疗AGA的可能性及优势,以期为进一步研究及临床应用提供参考。
Abstract: Androgenetic alopecia (AGA) is one of the most common types of hair loss. Hair follicle stem cells play a vital role in regulating the growth of hair follicle cycle, and the specific regulatory strategies include: regulating the microenvironment of hair follicle stem cells, intervening in signaling and growth factor expression, etc. This review explores the pathogenesis of AGA, summarizes the recent research on targeting and regulating hair follicle stem cells, as well as the possibilities and advantages of this strategy for the treatment of AGA, with a view to providing reference for further research and clinical application.
文章引用:胡婕, 胡韫伟, 张晓雅, 梁嘉莹, 吴建新, 黄庆. 靶向调控毛囊干细胞功能治疗雄激素脱发的研究进展[J]. 药物资讯, 2024, 13(3): 187-197. https://doi.org/10.12677/pi.2024.133023

1. 引言

脱发根据其发病原因可分为非瘢痕性和瘢痕性脱发两大类,临床上以非瘢痕性脱发为主,主要包括AGA和斑秃等 [1] 。非瘢痕性脱发中,毛囊上皮干细胞(hair follicle epithelial stem cells, HFESCs)被保留,因此理论上此种脱发的进程可被逆转 [2] 。靶向毛囊干细胞功能具有效果明显、副作用小等优点,是治疗AGA及改善毛囊生长发育的一个有效作用途径 [3] [4] 。现已有多项研究证明其通过直接作用或旁分泌途径间接作用,发挥治疗AGA及促进毛囊生长发育的功效。因此,本文对近年来基于靶向毛囊干细胞治疗和预防AGA的相关研究进行总结,以期为开发预防AGA的日用产品以及临床AGA治疗提供思路。

2. 毛囊干细胞

毛囊是控制毛发生长的皮肤附属器官,是毛干的“发源地”。毛囊是一个由多种细胞类型组成的微型器官,其中包含两种具有再生、分化功能的干性细胞,分别是毛囊间充质干细胞,又称真皮毛乳头细胞(dermal papilla cells, DPCs),以及毛囊上皮干细胞,又称HFESCs [5] (图1)。

Figure 1. Hair follicle structure

图1. 毛囊结构

位于毛囊毛球部的DPCs是一种间充质细胞,在毛发生长和形态发生中发挥着极其重要的作用。DPCs不仅是毛囊生长的信号指导中心,还是多效干细胞、营养素和生长因子的储存库 [6] [7] ,是筛选具有促进毛发生长作用候选物质的常用体外模型。常见的检测指标包括:DPCs的增殖、凋亡、炎症、氧化应激、衰老情况及信号通路调控、生长因子分泌等。HFESCs来源于毛囊隆突部,具有高度增殖性,是重要的自体干细胞来源,它能够建立自己的生态位并主动与其生态位通信,实现组织稳态和伤口愈合 [8] 。Li等 [9] 使用环孢菌素A激活了HFESCs,使毛囊由退行期进行到生长期,最终诱导特异性基因敲除小鼠的背部毛发生长。

Figure 2. The dynamic process of hair growth

图2. 毛发生长的动态过程

毛囊历经生长期(长达2~7年)、退行期(2~3周)和休止期(5~6周),呈周期性生长。如图2所示,在休止期,毛球部的DPCs分泌骨形态发生蛋白信号(BMP)抑制隆突部HFESCs增殖,HFESCs维持在静止状态。在休止期–生长期过渡期间,DPCs分泌成纤维细胞生长因子7 (FGF7)、成纤维细胞生长因子10 (FGF10)、转化生长因子-β2 (TGF-β2)和Noggin等信号分子激活HFESCs,HFESCs沿外根鞘(outer root sheath, ORS)迁移至毛囊底部,分化为毛基质细胞(hiar matrix cells, HMCs)。生长期中期,HMCs产生声波刺猬信号(Shh),诱导隆突部的HFESCs增殖,HFESCs转化为HMCs,HMCs不断增殖分化堆积,形成新的发干。在生长期晚期,毛囊在HMCs快速增殖的带动下继续向下生长。当HMCs远离隆突部时,HFESCs恢复静止状态。在生长期–退行期过渡期间,外根鞘和基质分泌成纤维细胞生长因子5 (FGF5)与DPCs中的FGF受体结合,启动退行期。进入退行期后,DPCs分泌TGF-β1和Dickkopf相关蛋白2 (Dickkopf2,WNT信号通路抑制剂),诱导HMCs凋亡 [10] 。DPCs由于抗凋亡蛋白(Bcl-2)的表达,对细胞凋亡具有抗性,只表现出体积缩小 [11] [12] 。HMCs凋亡,DPCs缩小,二者逐渐分离,头发停止生长。休止期时,HFESCs分裂形成HMCs前体,储存在底部,又称为“次级毛芽”。此时,毛干保留在毛囊的上部,随意的牵拉就会掉落。休止期结束后,静息的HFESCs响应自DPCs的信号,进入生长期早期,开启新的毛囊生长周期。毛囊的间充质干细胞DPCs以及周围上皮基质细胞(HFESCs、HMCs和ORS)之间的调节、相互作用,调控毛囊周期性生长,被称为毛囊的上皮–间质相互作用(epithelial-mesenchymal interactions, EMI) [13] 。

DPCs:真皮毛乳头细胞;BMP:骨形态发生蛋白;HFESCs:毛囊上皮干细胞;FGF7:成纤维细胞生长因子7;FGF10:成纤维细胞生长因子10;TGF-β2:转化生长因子-β2;HMCs:毛基质细胞;Shh:声波刺猬;TGF-β1:转化生长因子-β1;DKK-1:Dickkopf相关蛋白1;FGF5:成纤维细胞生长因子5;DP:毛乳头。(→:促进或激活;┤:抑制)

3. 毛囊干细胞与雄激素脱发

3.1. 雄激素脱发

现代医学认为AGA是一种慢性进行性疾病,其患病率取决于年龄和种族。根据现有数据显示,30%的白人男性在30岁时会患有AGA,且随着年龄的增长,患病率逐步提升 [14] 。在中国,男性AGA的总患病率为21.3%,女性AGA的总患病率为6.0% [15] ,尽管AGA的确切发病机制仍有待阐明,但目前多项研究表明其是由多种因素综合作用造成的,包括:遗传、雄激素水平、微炎症、皮脂分泌过多、氧化应激、细胞凋亡和菌群失调等因素。AGA的特征是毛囊逐渐小型化和生长期缩短,导致毛干异常短而薄,最终导致AGA患者头发逐渐稀疏和脱发 [16] 。AGA的主要临床表现为男性额发特征性后退和女性弥漫性头发稀疏,额发际线保留,影响着患者的正常生活及心理健康 [17] 。

3.2. 毛囊干细胞与雄激素脱发

头发的疏密程度由毛囊的尺寸和数目所决定,毛囊的数目在出生后不再增加,但毛发的粗细以及生长与脱落会受到雄激素水平的影响 [18] 。雄激素是类固醇激素,主要为睾酮,经靶细胞中5α-还原酶作用产生活性更强的二氢睾酮(dihydrotesterone, DHT),DHT与雄激素受体(androgen receptor, AR)亲和力更强,其形成的复合物DHT-AR将介导下游生物活性反应 [19] 。相比于非AGA患者,AGA患者血清中游离的睾酮和DHT水平更高 [20] ,使AGA患者毛囊受到更多的雄激素刺激。此外,DPCs是毛囊中雄激素的主要靶细胞,AGA患者秃顶头皮毛囊的DPCs中5α-还原酶和AR表达量上调,从而导致其毛囊对雄激素的敏感性增加,雄激素敏感性增加是AGA的主要发病原因 [21] [22] 。DHT-AR过度激活促进DPCs凋亡,将导致毛囊生长期缩短,终毛进行性转化为较细的毳毛,且更容易脱落 [23] 。

毛囊受雄激素攻击后激活免疫细胞,包括巨噬细胞、T细胞和中性粒细胞等,它们会聚集在头皮上分泌炎症因子,进一步攻击萎缩的毛囊 [24] 。毛囊微型化导致的毛干收缩和脱落可引起机械压缩,激活Piezo1通道(机械敏感性离子通道)、触发Ca2+向内流动,从而增加炎症因子的敏感性并诱导HFESCs长期凋亡 [3] 。在AGA中,炎症靶向攻击上皮基质祖细胞(位于基底部,可分化为内根鞘),HFESCs细胞群减少,导致HMCs数量的减少,最终导致毛干变细 [3] [25] (图3)。

Figure 3. Normal hair follicles and AGA follicles

图3. 正常毛囊与AGA毛囊

目前,仅米诺地尔和非那雄胺被FDA批准用于治疗AGA,前者是血管扩张剂,后者是II型和III型5α-还原酶的选择性抑制剂 [26] 。但是,外用米诺地尔,使用效果个体差异大,并且可产生头皮瘙痒、接触性皮炎等副作用,以及存在狂脱期被患者所不能接受 [27] 。内服非那雄胺可能产生性功能障碍和抑郁症等不良反应,不良反应记录率达6.8% [28] 。此外,仍有一些药物也拥有一定的抑制AGA的作用,例如:螺内酯,它是一种保钾利尿剂,可竞争性阻断AR并抑制卵巢雄激素的产生,但一般不适用于男性AGA患者 [29] ;比卡鲁胺,通过抑制DHT-AR形成,抑制AGA,但可见患者转氨酶增加以及月经自发消退、短暂性闭经等副作用 [30] 。

简而言之,目前所使用的治疗药物多从扩张血管从而促进血液循环以增加毛囊营养和调节全身激素作用治疗AGA,但副作用较多,因此仍需探索疗效明显且副作用少的治疗药物。近年来随着对AGA发病原因的不断研究表明,毛囊干细胞对AGA发病进程有主要调节作用,成为研究热点。

4. AGA发病机制

AGA的明确发病机制尚不清楚,但目前普遍认为和遗传、局部雄激素水平升高和AR表达升高相关 [31] 。常规的治疗手段多集中于扩张血管和调节全身激素水平,而忽视了雄激素在局部产生过量给毛囊带来的危害 [32] 。

靶向调控毛囊干细胞功能通过直接影响DPCs和HFESCs的信号通路和生长因子的表达,并诱导细胞旁分泌作用,减缓甚至消除雄激素带来的伤害,从而达到调节毛囊正常生长发育的目的。研究表明DHT参与调节Wnt/β-catenin、PI3K/AKT、TGF-β/BMP、Shh等信号通路以及多种生长因子的表达,它们之间相互串扰,影响着毛囊的生长发育及微环境的调控,最终影响着AGA的病程。

4.1. 信号通路机制

Wnt信号通路分为典型和非典型信号通路,DPCs增殖和分化的主要机制是通过典型的Wnt信号传导,即Wnt/β-catenin信号。其在毛发生长和维持生长期、HFESCs的活化、维持DPCs的毛发诱导活性中起重要作用 [33] 。在Wnt信号通路未被激活的情况下,β-catenin积聚在细胞质中,此后,它被糖原合成酶激酶-3β (glycogen synthase kinase-3 beta, GSK-3β)泛素化和降解 [34] 。稳定的β-catenin与T细胞因子(t-cell factor, TCF)/淋巴增强因子(lymphoid enhancer-binding factor, LEF)结合,随后β-catenin-TCF/LEF核易位导致参与细胞增殖调节的基因被转录激活 [35] 。然而,DHT可通过上调GSK-3β,从而抑制β-catenin-TCF/LEF的核易位,抑制DPCs增殖和HFESCs分化,导致毛囊周期循环受阻,最终脱发。

PI3K/AKT信号通路能调控细胞增殖、生长、迁移和凋亡。AKT,即蛋白激酶B (protein kinase b, PKB),是磷酸肌醇3-激酶(phosphoinositide 3-kinase, PI3K)信号传导途径中主要下游分子之一。Akt信号也被认为是干细胞的调节因子,可以维持干细胞的特性,且这种效应与Wnt/β-catenin途径的诱导有关 [36] 。PI3K/AKT的激活可以抑制GSK-3β的功能,而GSK-3β是Wnt/β-catenin途径的负调节剂 [37] 。同时,AKT是重要的抗凋亡因子,AKT表达降低,抑制Bcl-2(抗凋亡基因)的表达并诱导细胞凋亡 [38] 。米诺地尔即通过增加Bcl-2/Bax(促凋亡基因)比率,激活AKT的表达促进DPCs的增殖。Fang等 [39] 使用丙酸睾酮建立AGA小鼠模型,发现某生发素通过调节PI3K/Akt表达上调、抑制细胞凋亡缓解AGA。

BMP属于TGF-β家族,在表皮发育过程中阻止细胞增殖和分化,在控制毛囊生长阶段的启动中起着至关重要的作用 [40] 。一方面,BMP信号是毛发产生所必需的复杂上皮——间充质串扰的关键特征,又能维持体内的毛发诱导活性 [25] 。Kulessa等 [41] 发现,在Msx2-Noggin (BMP拮抗剂)转基因小鼠中BMP信号传导的破坏会影响生长期毛囊的生长和分化,结果确定BMP是控制出生后毛囊毛干分化的遗传程序的关键调节因子。另一方面,BMP在毛发周期控制中抑制毛囊从休止期向生长期转变 [42] 。Ceruti等 [40] 发现DHT驱动的雄激素敏感DPCs中BMP2和BMP4的下调,3D培养条件下,BMP2和BMP4基因水平在细胞聚集期间以时间依赖性方式增加,直到球状体成形。因此,TGF-β/BMP信号通路在毛发的周期控制中发挥的作用仍存在争议。

Shh信号传导调节胚胎生命期间毛囊发育,并通过促进毛囊休止期到生长期的转化和表皮生长来影响毛囊的周期性生长与发育 [43] 。据推测,Shh信号是调节毛囊诱导的Wnt/β-catenin信号的下游途径 [44] 。Yang等 [45] 将慢病毒介导的Shh转染到HFESCs中,发现Shh过表达后HFESCs的增殖活性显著增强,并且HFESCs可以连续稳定地分泌和表达Shh,促进毛囊再生。

4.2. 细胞因子机制

DPCs是毛囊生长发育的“指挥中心”,通过自分泌及旁分泌生长因子调节毛囊细胞的生理变化,在雄激素的作用下,其生长因子表达发生变化,影响增殖和迁移、毛囊周期生长、维持细胞的诱导活性和影响相关信号通路。通过调节生长因子分泌改善AGA以及影响毛囊的生长发育已被充分证明(表1)。

5. 通过调节毛囊干细胞治疗AGA的研究

毛囊干细胞主要包括HFESCs和DPCs,通过调节毛囊干细胞治疗AGA的研究繁多。例如,使用中药提取物、生物制品等刺激毛囊干细胞,促进其增殖迁移,通过介导其自分泌或旁分泌的途径,介导生长因子的表达,从而增强AGA的治疗效果。

5.1. 中药提取物靶向毛囊干细胞调控AGA

中医药治疗AGA历史悠久,古时中医将AGA称之为“发蛀脱发”、“蛀发癣”,中药通过多途径、多靶点、多通路途径调节毛囊生长异常,以达到治疗AGA的目的。近现代研究中治疗AGA的中药,多以活性成分、提取物、配伍组分等形式表现。

在睾酮诱导的AGA小鼠模型中,爵床提取物通过促进小鼠背部皮肤中p-GSK-3ββ-catenin的表达,减少小鼠脱发、增加毛发厚度并增强毛发光泽 [54] 。矢车菊素-3-O-葡萄糖苷及其衍生物葡萄素A,通过抑制AR的表达、降低DHT诱导DPCs的凋亡、阻止了DHT诱导的Wnt10b和β-catenin表达降低、调控FGF-7和TGF-β1的分泌,有效改善DHT引起的毛囊小型化、消退和凋亡 [55] 。红毛丹变种提取物可恢复DHT对DPCs增殖的抑制,口服可恢复睾酮诱导的小鼠皮肤的周期蛋白D1的表达 [56] 。人参皂苷Rg4通过激活DPCs中Akt/GSK3β/β-catenin信号通路促进DPCs的毛发诱导特性,显著增加Wnt5a、β-catenin和LEF1的基因表达 [33] 。薤白提取物通过促进Bcl-2的表达,抑制DPCs的凋亡,并通过激活Wnt/β-catenin信号,增强生长因子的表达(HGF,IGF-1α和FGF-2),最终促进了DPCs的增殖和AGA小鼠的毛发再生 [34] 。负载槲皮素的铜/锌双掺杂纳米复合微针,通过保护DHT诱导的DPCs的损伤、炎症,促进血管生成,最终促进烧伤小鼠毛发的生长 [24] 。Choi等 [43] 发现红参油通过介导Shh/Gli途径,逆转了睾酮诱导的抑制C57BL/6小鼠毛发再生,还发现红参油中的两种主要化合物亚油酸和β-谷甾醇也可激活睾酮处理小鼠的Shh/Gli信号通路。姜黄素–锌框架封装的γ-聚谷氨酸微针贴剂,通过增加AGA小鼠模型的毛细血管密度,促进细胞增殖,加速了小鼠伤口愈合并改善毛发再生 [57] 。

Table 1. Androgens affect the expression of growth factors in DPCs

表1. 雄激素影响DPCs生长因子的表达

5.2. 旁分泌介质靶向毛囊干细胞调控AGA

除了中药提取物外,生物制品治疗AGA的相关研究与应用也很多,包括使用干细胞自生及其分泌物、添加生长因子、改变培养条件(如病毒转录、缺氧、UVB照射)等,后者可以增加有效组分的表达,从而增强毛囊干细胞的治疗效果,进一步改善AGA的病程。

脂肪来源间充质干细胞(AD-MSCs)可通过旁分泌作用产生生物活性因子,调节头发生长周期并促进头发生长 [58] 。AD-MSCs条件培养基,可增加非烧蚀性点阵激光治疗后的AGA患者头发密度和体积 [59] 。通过低剂量UVB辐射处理AD-MSCs,其条件培养基中bFGF、KGF、HGF和VEGF的表达增加,进一步诱导DPCs、ORS的增殖,诱导生长期毛囊的毛干伸长,促进C3H/HeN小鼠的毛发生长 [60] 。米诺地尔除了直接作用于DPCs外,也可以通过增加AD-MSCs的迁移、血管形成以及生长因子的分泌,进一步促进DPCs增殖,加速了小鼠的毛囊从休止期到生长期的转变来促进毛发生长 [61] 。AD-MSCs外泌体一方面通过促进DPCs增殖、迁移和增强毛发诱导性,另一方面通过促进p-GSK-3β的表达和β-catenin的核易位,激活Wnt/β-catenin信号,拮抗DHT诱导的小鼠毛囊数量降低与毛囊生长周期紊乱 [31] 。

骨髓来源间充质干细胞(BM-MSCs)具有无限增殖能力和多向分化潜能。有研究表明,BM-MSCs可用于动物模型伤口修复,增强头发再生 [62] 。用Wnt1a处理过的BM-MSCs促进毛囊从休止期向生长期转变,并增强毛乳头区ALP的表达,最终增强DPCs诱导毛发循环和再生的能力 [63] 。将IGF-1和BM-MSCs掺入的胶原–壳聚糖支架,运用于大鼠全层皮肤损伤模型中,发现IGF-1通过胰岛素样生长因子受体介导的ERK1/2信号通路促进BM-MSCs的增殖和迁移,最终促进伤口愈合以及毛囊再生 [64] 。

人脐带间充质干细胞(HUC-MSCs)在治疗脱发方面,Dong等 [65] 使用含有表达Wnt7a的病毒结合聚凝胺的培养基孵育HUC-MSCs,并收集上清液,发现上清液可通过刺激Wnt途径刺激小鼠伤口愈合并促进毛囊再生。将人羊水间充质干细胞(AF-MSCs)的条件培养基皮下注射到大鼠全层伤口周围时,伤口愈合加速,伤口部位的头发重新生长 [66] 。进一步研究表明,Nanog基因(维持AF-MSCs自我更新能力)过表达的AF-MSCs促进ALP的表达,加速了毛囊从休止期到生长期的转变,并增加了毛发长度和密度 [66] 。

6. 总结展望

AGA容易造成患者心理困扰,并影响患者的社会交流。传统治疗方法为药物治疗,即外用米诺地尔和口服非那雄胺治疗。但是这两种治疗方法都有明显的缺点,包括副作用大、疗效存在较大个体差异、用药时间长等 [67] 。

毛囊干细胞在调节毛囊毛发生长方面起主要作用,在细胞培养过程中,维持DPCs的毛发诱导性以及与上皮细胞的串扰作用,是毛囊体外形态发生和再生的主要因素 [6] 。研究发现,将人类毛囊干细胞接种在球状体培养板中,并补充低浓度的基质胶或胶原I培养基,可以介导EMI产生毛发 [13] 。

调节毛囊干细胞功能是治疗AGA的有效途径。随着靶向疗法和毛发组织工程领域的不断发展,靶向毛囊干细胞能促进细胞增殖、迁移,以及增强毛囊干细胞的自分泌和旁分泌效应,改善AGA病程和毛囊的生长发育。

现有干细胞治疗脱发相关实验及临床试验,多集中于干细胞自生及其分泌物对于AGA的影响与治疗,且相关的临床应用缺少一致性与规范化,因此,靶向毛囊干细胞功能疗法仍有较大的研究空间。该疗法在治疗AGA方面有巨大潜力,需进一步将此种方法理论化、规范化,以期为理论研究和临床应用提供可靠依据。

NOTES

*通讯作者。

参考文献

[1] Anudeep, T.C., Jeyaraman, M., Muthu, S., et al. (2022) Advancing Regenerative Cellular Therapies in Non-Scarring Alopecia. Pharmaceutics, 14, 612-637.
https://doi.org/10.3390/pharmaceutics14030612
[2] Yuan, A.R., Bian, Q. and Gao, J.Q. (2020) Current Advances in Stem Cell-Based Therapies for Hair Regeneration. European Journal of Pharmacology, 881, Article ID: 173197.
https://doi.org/10.1016/j.ejphar.2020.173197
[3] Wang, W., Wang, H., Long, Y., et al. (2023) Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules, 14, Article No. 20.
https://doi.org/10.3390/biom14010020
[4] Liu, Y., Yang, S., Zeng, Y., et al. (2022) Dysregulated Behaviour of Hair Follicle Stem Cells Triggers Alopecia and Provides Potential Therapeutic Targets. Experimental Dermatology, 31, 986-992.
https://doi.org/10.1111/exd.14600
[5] Mao, Y., Liu, P., Wei, J., et al. (2023) Cell Therapy for Androgenetic Alopecia: Elixir or Trick? Stem Cell Reviews and Reports, 19, 1785-1799.
https://doi.org/10.1007/s12015-023-10532-2
[6] Taghiabadi, E., Nilforoushzadeh, M.A. and Aghdami, N. (2020) Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods. Skin Pharmacology and Physiology, 33, 280-292.
https://doi.org/10.1159/000510152
[7] Madaan, A., Verma, R., Singh, A.T., et al. (2018) Review of Hair Follicle Dermal Papilla Cells as in Vitro Screening Model for Hair Growth. International Journal of Cosmetic Science, 40, 429-450.
https://doi.org/10.1111/ics.12489
[8] Fuchs, E. and Blau, H.M. (2020) Tissue Stem Cells: Architects of Their Niches. Cell Stem Cell, 27, 532-556.
https://doi.org/10.1016/j.stem.2020.09.011
[9] Li, G., Tang, X., Zhang, S., et al. (2020) SIRT7 Activates Quiescent Hair Follicle Stem Cells to Ensure Hair Growth in Mice. The EMBO Journal, 39, Article ID: 104365.
https://doi.org/10.15252/embj.2019104365
[10] Zhang, B. and Chen, T. (2024) Local and Systemic Mechanisms That Control the Hair Follicle Stem Cell Niche. Nature Reviews Molecular Cell Biology, 25, 87-100.
https://doi.org/10.1038/s41580-023-00662-3
[11] Nan, W., Li, G., Si, H., et al. (2020) All-Trans-Retinoic Acid Inhibits Mink Hair Follicle Growth via Inhibiting Proliferation and Inducing Apoptosis of Dermal Papilla Cells through TGF-β2/Smad2/3 Pathway. Acta Histochemica, 122, Article ID: 151603.
https://doi.org/10.1016/j.acthis.2020.151603
[12] Nicu, C., Wikramanayake, T.C. and Paus, R. (2020) Clues That Mitochondria Are Involved in the Hair Cycle Clock: MPZL3 Regulates Entry into and Progression of Murine Hair Follicle Cycling. Experimental Dermatology, 29, 1243-1249.
https://doi.org/10.1111/exd.14213
[13] Kageyama, T., Miyata, H., Seo, J., et al. (2023) In Vitro Hair Follicle Growth Model for Drug Testing. Scientific Reports, 13, 4847-4857.
https://doi.org/10.1038/s41598-023-31842-y
[14] Hamilton, J.B. (1951) Patterned Loss of Hair in Man; Types and Incidence. Annals of the New York Academy of Sciences, 53, 708-728.
https://doi.org/10.1111/j.1749-6632.1951.tb31971.x
[15] Wang, T.L., Zhou, C., Shen, Y.W., et al. (2010) Prevalence of Androgenetic Alopecia in China: A Community-Based Study in Six Cities. British Journal of Dermatology, 162, 843-847.
https://doi.org/10.1111/j.1365-2133.2010.09640.x
[16] Fu, D., Huang, J., Li, K., et al. (2021) Dihydrotestosterone-Induced Hair Regrowth Inhibition by Activating Androgen Receptor in C57BL6 Mice Simulates Androgenetic Alopecia. Biomedicine & Pharmacotherapy, 137, Article ID: 111247.
https://doi.org/10.1016/j.biopha.2021.111247
[17] Ruksiriwanich, W., Khantham, C., Muangsanguan, A., et al. (2022) Guava (Psidium guajava L.) Leaf Extract as Bioactive Substances for Anti-Androgen and Antioxidant Activities. Plants, 11, Article No. 3514.
https://doi.org/10.3390/plants11243514
[18] 徐亚男. 多组学联合解析调控羊绒细度的功能物质及其表达验证[D]: [硕士学位论文]. 沈阳: 沈阳农业大学动物科学与医学学院, 2023.
[19] Ceruti, J.M., Leirós, G.J. and Balañá, M.E. (2018) Androgens and Androgen Receptor Action in Skin and Hair Follicles. Molecular and Cellular Endocrinology, 465, 122-133.
https://doi.org/10.1016/j.mce.2017.09.009
[20] Zhang, Y., Xu, J., Jing, J., et al. (2018) Serum Levels of Androgen-Associated Hormones Are Correlated with Curative Effect in Androgenic Alopecia in Young Men. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 7770-7777.
https://doi.org/10.12659/MSM.913116
[21] Devjani, S., Ezemma, O., Kelley, K.J., et al. (2023) Androgenetic Alopecia: Therapy Update. Drugs, 83, 701-715.
https://doi.org/10.1007/s40265-023-01880-x
[22] Hibberts, N.A., Howell, A.E. and Randall, V.A. (1998) Balding Hair Follicle Dermal Papilla Cells Contain Higher Levels of Androgen Receptors than Those from Non-Balding Scalp. Journal of Endocrinology, 156, 59-65.
https://doi.org/10.1677/joe.0.1560059
[23] Grymowicz, M., Rudnicka, E., Podfigurna, A., et al. (2020) Hormonal Effects on Hair Follicles. International Journal of Molecular Sciences, 21, 5342-5355.
https://doi.org/10.3390/ijms21155342
[24] Zhang, Z., Li, W., Chang, D., et al. (2023) A Combination Therapy for Androgenic Alopecia Based on Quercetin and Zinc/Copper Dual-Doped Mesoporous Silica Nanocomposite Microneedle Patch. Bioactive Materials, 24, 81-95.
https://doi.org/10.1016/j.bioactmat.2022.12.007
[25] Garza, L.A., Yang, C.C., Zhao, T., et al. (2011) Bald Scalp in Men with Androgenetic Alopecia Retains Hair Follicle Stem Cells but Lacks CD200-Rich and CD34-Positive Hair Follicle Progenitor Cells. Journal of Clinical Investigation, 121, 613-622.
https://doi.org/10.1172/JCI44478
[26] Rendl, M., Polak, L. and Fuchs, E. (2008) BMP Signaling in Dermal Papilla Cells Is Required for Their Hair Follicle-Inductive Properties. Genes & Development, 22, 543-557.
https://doi.org/10.1101/gad.1614408
[27] Suchonwanit, P., Thammarucha, S. and Leerunyakul, K. (2019) Minoxidil and Its Use in Hair Disorders: A Review. Drug Design, Development and Therapy, 13, 2777-2786.
https://doi.org/10.2147/DDDT.S214907
[28] Feaster, B., Onamusi, T., Cooley, J.E., et al. (2023) Oral Minoxidil Use in Androgenetic Alopecia and Telogen Effluvium. Archives of Dermatological Research, 315, 201-205.
https://doi.org/10.1007/s00403-022-02331-5
[29] Wang, C., Du, Y., Bi, L., et al. (2023) The Efficacy and Safety of Oral and Topical Spironolactone in Androgenetic Alopecia Treatment: A Systematic Review. Clinical, Cosmetic and Investigational Dermatology, 16, 603-612.
https://doi.org/10.2147/CCID.S398950
[30] Carvalho, R, De, M., Santos, L.D.N., Ramos, P.M., et al. (2022) Bicalutamide and the New Perspectives for Female Pattern Hair Loss Treatment: What Dermatologists Should Know. Journal of Cosmetic Dermatology, 21, 4171-4175.
https://doi.org/10.1111/jocd.14773
[31] Tang, X., Cao, C., Liang, Y., et al. (2023) Adipose-Derived Stem Cell Exosomes Antagonize the Inhibitory Effect of Dihydrotestosterone on Hair Follicle Growth by Activating Wnt/β-Catenin Pathway. Stem Cells International, 2023, Article ID: 5548112.
https://doi.org/10.1155/2023/5548112
[32] Lolli, F., Pallotti, F., Rossi, A., et al. (2017) Androgenetic Alopecia: A Review. Endocrine, 57, 9-17.
https://doi.org/10.1007/s12020-017-1280-y
[33] Jeong, G., Shin, S.H., Kim, S.N., et al. (2023) Ginsenoside Re Prevents 3-Methyladenine-Induced Catagen Phase Acceleration by Regulating Wnt/β-Catenin Signaling in Human Dermal Papilla Cells. Journal of Ginseng Research, 47, 440-447.
https://doi.org/10.1016/j.jgr.2022.11.002
[34] Gao, R., Yu, Z., Lv, C., et al. (2023) Medicinal and Edible Plant Allium Macrostemon Bunge for the Treatment of Testosterone-Induced Androgenetic Alopecia in Mice. Journal of Ethnopharmacology, 315, Article ID: 116657.
https://doi.org/10.1016/j.jep.2023.116657
[35] Choi, B.Y. (2020) Targeting Wnt/β-Catenin Pathway for Developing Therapies for Hair Loss. International Journal of Molecular Sciences, 21, 4915-4931.
https://doi.org/10.3390/ijms21144915
[36] Soe, Z.C., Ei, Z.Z., Visuttijai, K., et al. (2023) Potential Natural Products Regulation of Molecular Signaling Pathway in Dermal Papilla Stem Cells. Molecules, 28, 5517-5536.
https://doi.org/10.3390/molecules28145517
[37] Zheng, W. and Xu, C.H. (2023) Innovative Approaches and Advances for Hair Follicle Regeneration. ACS Biomaterials Science & Engineering, 9, 2251-2276.
https://doi.org/10.1021/acsbiomaterials.3c00028
[38] Gentile, P. and Garcovich, S. (2019) Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt Pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells, 8, 466-487.
https://doi.org/10.3390/cells8050466
[39] Fang, T., Xu, R., Sun, S., et al. (2023) Caizhixuan Hair Tonic Regulates both Apoptosis and the PI3K/Akt Pathway to Treat Androgenetic Alopecia. PLOS ONE, 18, e0282427.
https://doi.org/10.1371/journal.pone.0282427
[40] Ceruti, J.M., Oppenheimer, F.M., Leirós, G.J., et al. (2021) Androgens Downregulate BMP2 Impairing the Inductive Role of Dermal Papilla Cells on Hair Follicle Stem Cells Differentiation. Molecular and Cellular Endocrinology, 520, Article ID: 111096.
https://doi.org/10.1016/j.mce.2020.111096
[41] Kulessa, H., Turk, G. and Hogan, B.L. (2000) Inhibition of Bmp Signaling Affects Growth and Differentiation in the Anagen Hair Follicle. The EMBO Journal, 19, 6664-6674.
https://doi.org/10.1093/emboj/19.24.6664
[42] Plikus, M.V., Mayer, J.A., De La Cruz, D., et al. (2008) Cyclic Dermal BMP Signalling Regulates Stem Cell Activation during Hair Regeneration. Nature, 451, 340-344.
https://doi.org/10.1038/nature06457
[43] Choi, B.Y. (2018) Hair-Growth Potential of Ginseng and Its Major Metabolites: A Review on Its Molecular Mechanisms. International Journal of Molecular Sciences, 19, 2703-2716.
https://doi.org/10.3390/ijms19092703
[44] Veltri, A., Lang, C. and Lien, W.H. (2018) Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. Stem Cells, 36, 22-35.
https://doi.org/10.1002/stem.2723
[45] Yang, Y., Wang, G., Yang, Q., et al. (2023) Effect Study of Sonic Hedgehog over Expressed Hair Follicle Stem Cells in Hair Follicle Regeneration. Chinese Journal of Reparative and Reconstructive Surgery, 37, 868-878.
[46] Wang, C., Zang, K., Tang, Z., et al. (2023) Hordenine Activated Dermal Papilla Cells and Promoted Hair Regrowth by Activating Wnt Signaling Pathway. Nutrients, 15, 694-706.
https://doi.org/10.3390/nu15030694
[47] Wei, H., Yang, S., Yi, T., et al. (2023) CircAGK Regulates High Dihydrotestosterone-Induced Apoptosis in DPCs through the MiR-3180-5p/BAX Axis. FASEB Journal, 37, E22728.
https://doi.org/10.1096/fj.202200849R
[48] Ma, L., Shen, H., Fang, C., et al. (2022) Camellia Seed Cake Extract Supports Hair Growth by Abrogating the Effect of Dihydrotestosterone in Cultured Human Dermal Papilla Cells. Molecules, 27, Article No. 6443.
https://doi.org/10.3390/molecules27196443
[49] Deng, W., Hu, T., Han, L., et al. (2021) MiRNA Microarray Profiling in Patients with Androgenic Alopecia and the Effects of MiR-133b on Hair Growth. Experimental and Molecular Pathology, 118, Article ID: 104589.
https://doi.org/10.1016/j.yexmp.2020.104589
[50] Yuan, A., Xia, F., Bian, Q., et al. (2021) Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment. ACS Nano, 15, 13759-13769.
https://doi.org/10.1021/acsnano.1c05272
[51] Gentile, P., Scioli, M.G., Bielli, A., et al. (2019) Platelet-Rich Plasma and Micrografts Enriched with Autologous Human Follicle Mesenchymal Stem Cells Improve Hair Re-Growth in Androgenetic Alopecia. Biomolecular Pathway Analysis and Clinical Evaluation. Biomedicines, 7, Article No. 27.
https://doi.org/10.3390/biomedicines7020027
[52] Liu, Z., He, Z., Ai, X., et al. (2024) Cardamonin-Loaded Liposomal Formulation for Improving Percutaneous Penetration and Follicular Delivery for Androgenetic Alopecia. Drug Delivery and Translational Research.
https://doi.org/10.1007/s13346-024-01519-8
[53] Li, K., Sun, Y., Liu, S., et al. (2023) The AR/MiR-221/IGF-1 Pathway Mediates the Pathogenesis of Androgenetic Alopecia. International Journal of Biological Sciences, 19, 3307-3323.
https://doi.org/10.7150/ijbs.80481
[54] Kim, D., Lee, E., Choi, P.G., et al. (2024) Justicia Procumbens Prevents Hair Loss in Androgenic Alopecia Mice. Biomedicine & Pharmacotherapy, 170, Article ID: 115913.
https://doi.org/10.1016/j.biopha.2023.115913
[55] Hu, X., Li, X., Wu, S., et al. (2024) Cyanidin-3-O-Glucoside and Its Derivative Vitisin A Alleviate Androgenetic Alopecia by Exerting Anti-Androgen Effect and Inhibiting Dermal Papilla Cell Apoptosis. European Journal of Pharmacology, 963, Article ID: 176237.
https://doi.org/10.1016/j.ejphar.2023.176237
[56] Kang, H.Y., Woo, M.J., Paik, S.J., et al. (2024) Recovery Effects of Nephelium lappaceum var. pallens (Hiern) Leenh. Extract on Testosterone-Induced Inhibition of Hair Growth in C57BL/6 Mice and Human Follicular Dermal Papilla Cells. Journal of Medicinal Food, 27, 167-175.
https://doi.org/10.1089/jmf.2023.K.0124
[57] Yang, Y., Wang, P., Gong, Y., et al. (2023) Curcumin-Zinc Framework Encapsulated Microneedle Patch for Promoting Hair Growth. Theranostics, 13, 3675-3688.
https://doi.org/10.7150/thno.84118
[58] Jin, Y., Li, S., Yu, Q., et al. (2023) Application of Stem Cells in Regeneration Medicine. MedComm, 4, 291-322.
https://doi.org/10.1002/mco2.291
[59] Lee, Y.I., Kim, J., Kim, J., et al. (2020) The Effect of Conditioned Media from Human Adipocyte-Derived Mesenchymal Stem Cells on Androgenetic Alopecia after Nonablative Fractional Laser Treatment. Dermatologic Surgery, 46, 1698-1704.
https://doi.org/10.1097/DSS.0000000000002518
[60] Jeong, Y.M., Sung, Y.K., Kim, W.K., et al. (2013) Ultraviolet B Preconditioning Enhances the Hair Growth-Promoting Effects of Adipose-Derived Stem Cells via Generation of Reactive Oxygen Species. Stem Cells and Development, 22, 158-168.
https://doi.org/10.1089/scd.2012.0167
[61] Choi, N., Shin, S., Song, S., et al. (2018) Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells. International Journal of Molecular Sciences, 19, 691-706.
https://doi.org/10.3390/ijms19030691
[62] Chen, L., Tredget, E.E., Wu, P.Y.G., et al. (2008) Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLOS ONE, 3, e1886.
[63] Dong, L., Hao, H., Xia, L., et al. (2014) Treatment of MSCs with Wnt1a-Conditioned Medium Activates DP Cells and Promotes Hair Follicle Regrowth. Scientific Reports, 4, Article No. 5432.
https://doi.org/10.1038/srep05432
[64] Xia, Y., Chen, J., Ding, J., et al. (2020) IGF1-and BM-MSC-Incorporating Collagen-Chitosan Scaffolds Promote Wound Healing and Hair Follicle Regeneration. American Journal of Translational Research, 12, 6264-6276.
[65] Dong, L., Hao, H., Liu, J., et al. (2017) A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice. Stem Cells International, 2017, Article ID: 3738071.
https://doi.org/10.1155/2017/3738071
[66] Yoon, B.S., Moon, J.H., Jun, E.K., et al. (2010) Secretory Profiles and Wound Healing Effects of Human Amniotic Fluid-Derived Mesenchymal Stem Cells. Stem Cells and Development, 19, 887-902.
https://doi.org/10.1089/scd.2009.0138
[67] Egger, A., Tomic-Canic, M. and Tosti, A. (2020) Advances in Stem Cell-Based Therapy for Hair Loss. CellR4—Repair, Replacement, Regeneration, & Reprogramming, 8, 2894-2902.