|
[1]
|
Chen, J., Ge, A., Zhou, Y., et al. (2023) White Matter Integrity Mediates the Associations between White Matter Hyper-intensities and Cognitive Function in Patients with Silent Cerebrovascular Diseases. CNS Neuroscience & Therapeutics, 29, 412-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chen, Y., Wang, X., Guan, L., et al. (2021) Role of White Matter Hyperintensities and Related Risk Factors in Vascular Cognitive Impairment: A Review. Biomolecules, 11, Article 1102. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Meng, F., Yang, Y. and Jin, G. (2022) Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment. Frontiers in Neurosci-ence, 13, Article ID: 865920. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, S., Hu, Y., Yang, H., et al. (2023) Value of White Matter Hyperintensity Volume and Total White Matter Volume for Evaluating Cognitive Impairment in Patients with Cerebral Small-Vessel Disease. Frontiers in Aging Neuroscience, 15, Article ID: 1096808. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Silbert, L.C., Howieson, D.B., Dodge, H., et al. (2009) Cognitive Impairment Risk: White Matter Hyperintensity Progression Matters. Neurology, 73, 120-125. [Google Scholar] [CrossRef]
|
|
[6]
|
Zeng, W., Chen, Y., Zhu, Z., et al. (2020) Severity of White Matter Hyperintensities: Lesion Patterns, Cognition, and Microstructural Changes. Journal of Cerebral Blood Flow & Metabolism, 40, 2454-2463. [Google Scholar] [CrossRef]
|
|
[7]
|
Yang, D., Li, J., Ke, Z., et al. (2023) Subsystem Mechanisms of Default Mode Network Underlying White Matter Hyperintensity-Related Cognitive Impairment. Human Brain Mapping, 44, 2365-2379. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, B., Du, B., Gu, Z., et al. (2022) Correlations among Peripheral Blood Markers, White Matter Hyperintensity, and Cognitive Function in Patients with Non-Disabling Ischemic Cerebrovascular Events. Frontiers in Aging Neuroscience, 14, Article ID: 1023195. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Qiao, S., Li, H., Guo, F., et al. (2022) Research Progress on Cognitive Impairment and the Expression of Serum Inflammatory Markers in Patients with White Matter Hyperintensities: A Narrative Review. Annals of Translational Medicine, 10, 421. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Y.L., Chen, W., Cai, W.J., et al. (2020) Associations of White Matter Hyperintensities with Cognitive Decline: A Longi-tudinal Study. Journal of Alzheimer’s Disease, 73, 759-768. [Google Scholar] [CrossRef]
|
|
[11]
|
Zwartbol, M.H.T., Ghaznawi, R., Jaarsma-Coes, M., et al. (2022) White Matter Hyperintensity Shape Is Associated with Cognitive Functioning—The SMART-MR Study. Neurobiology of Aging, 120, 81-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, T.Y., Chan, P.C., Tsai, C.F., et al. (2022) White Matter Hyperintensities in Dementia with Lewy Bodies Are Associated with Poorer Cognitive Function and Higher De-mentia Stages. Frontiers in Aging Neuroscience, 14, Article ID: 935652. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Karvelas, N. and Elahi, F.M. (2023) White Matter Hyperintensities: Complex Predictor of Complex Outcomes. Journal of the American Heart Association, 12, e030351. [Google Scholar] [CrossRef]
|
|
[14]
|
Lahna, D., Schwartz, D.L., Woltjer, R., et al. (2022) Venous Col-lagenosis as Pathogenesis of White Matter Hyperintensity. Annals of Neurology, 92, 992-1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Veldsman, M., Kindalova, P., Husain, M., et al. (2020) Spatial Distribution and Cognitive Impact of Cerebrovascular Risk-Related White Matter Hyperintensities. NeuroImage: Clinical, 28, Article ID: 102405. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Melazzini, L., Mackay, C.E., Bordin, V., et al. (2021) White Matter Hyperintensities Classified According to Intensity and Spatial Location Reveal Specific Associations with Cognitive Per-formance. NeuroImage: Clinical, 30, Article ID: 102616. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Jimenez-Balado, J., Corlier, F., Habeck, C., et al. (2022) Effects of White Matter Hyperintensities Distribution and Clustering on Late-Life Cognitive Impairment. Scientific Reports, 12, Ar-ticle No. 1955. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Qi, X., Tang, H., Luo, Q., et al. (2019) White Matter Hyperin-tensities Predict Cognitive Decline: A Community-Based Study. Canadian Journal of Neurological Sciences, 46, 383-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kaskikallio, A., Karrasch, M., Koikkalainen, J., et al. (2019) White Matter Hyperintensities and Cognitive Impairment in Healthy and Pathological Aging: A Quantified Brain MRI Study. Dementia and Geriatric Cognitive Disorders, 48, 297-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Huang, C.J., Zhou, X., Yuan, X., et al. (2021) Contribution of Inflammation and Hypoperfusion to White Matter Hyperintensi-ties-Related Cognitive Impairment. Frontiers in Neurology, 12, Article ID: 786840. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ding, D., Xiong, Y., Zhao, Q., et al. (2018) White Matter Hyper-intensity Predicts the Risk of Incident Cognitive Decline in Community Dwelling Elderly. Journal of Alzheimer’s Dis-ease, 61, 1333-1341. [Google Scholar] [CrossRef]
|
|
[22]
|
Kuang, Q., Huang, M., Lei, Y., et al. (2023) Clinical and Cognitive Cor-relates Tractography Analysis in Patients with White Matter Hyperintensity of Vascular Origin. Frontiers in Neurosci-ence, 17, Article ID: 1187979. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Quandt, F., Fischer, F., Schroder, J., et al. (2020) Higher White Matter Hyperintensity Lesion Load Is Associated with Reduced Long-Range Functional Connectivity. Brain Communi-cations, 2, fcaa111. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhu, W., Huang, H., Yang, S., et al. (2019) Dysfunctional Ar-chitecture Underlies White Matter Hyperintensities with and without Cognitive Impairment. Journal of Alzheimer’s Dis-ease, 71, 461-476. [Google Scholar] [CrossRef]
|
|
[25]
|
Wang, S., Zhang, F., Huang, P., et al. (2022) Superficial White Matter Microstructure Affects Processing Speed in Cerebral Small Vessel Disease. Human Brain Mapping, 43, 5310-5325. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Vergoossen, L.W.M., Jansen, J.F.A., van Sloten, T.T., et al. (2021) Inter-play of White Matter Hyperintensities, Cerebral Networks, and Cognitive Function in an Adult Population: Diffu-sion-Tensor Imaging in the Maastricht Study. Radiology, 298, 384-392. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Langen, C.D., Cremers, L.G.M., de Groot, M., et al. (2018) Dis-connection Due to White Matter Hyperintensities Is Associated with Lower Cognitive Scores. Neuroimage, 183, 745-756. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Garnier-Crussard, A., Desestret, V., Cotton, F., et al. (2020) White Matter Hyperintensities in Ageing: Pathophysiology, Associated Cognitive Disorders and Prevention. La Revue de Médecine Interne, 41, 475-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Keller, J.A., Kant, I.M.J., Slooter, A.J.C., et al. (2022) Different Cardiovascular Risk Factors Are Related to Distinct White Matter Hyperintensity MRI Phenotypes in Older Adults. NeuroImage: Clinical, 35, Article ID: 103131. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Song, S., Gaynor, A.M., Gazes, Y., et al. (2022) Physical Activity Moderates the Association between White Matter Hyperintensity Burden and Cognitive Change. Frontiers in Aging Neuroscience, 14, Article ID: 945645. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Boutzoukas, E.M., O’Shea, A., Kraft, J.N., et al. (2022) Higher White Matter Hyperintensity Load Adversely Affects Pre-Post Proximal Cognitive Training Performance in Healthy Older Adults. GeroScience, 44, 1441-1455. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ye, Q., Zhu, H., Chen, H., et al. (2022) Effects of Cognitive Reserve Proxies on Cognitive Function and Frontoparietal Control Network in Subjects with White Matter Hyperintensi-ties: A Cross-Sectional Functional Magnetic Resonance Imaging Study. CNS Neuroscience & Therapeutics, 28, 932-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Erkinjuntti, T., Roman, G. and Gauthier, S. (2004) Treatment of Vascular Dementia—Evidence from Clinical Trials with Cholinesterase Inhibitors. Journal of the Neurological Sciences, 226, 63-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Farlow, M.R. (2006) Use of Antidementia Agents in Vascular De-mentia: Beyond Alzheimer Disease. Mayo Clinic Proceedings, 81, 1350-1358. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Farooq, M.U., Min, J., Goshgarian, C., et al. (2017) Pharmacotherapy for Vascular Cognitive Impairment. CNS Drugs, 31, 759-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Craig, D. and Birks, J. (2005) Rivastigmine for Vascular Cognitive Impairment. Cochrane Database of Systematic Reviews, Article No. CD004744. [Google Scholar] [CrossRef]
|
|
[37]
|
Shi, X., Ren, G., Cui, Y., et al. (2022) Comparative Efficacy and Acceptability of Cholinesterase Inhibitors and Memantine Based on Dosage in Patients with Vascular Cognitive Impairment: A Network Meta-Analysis. Current Alzheimer Research, 19, 133-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Birks, J. and Grimley Evans, J. (2009) Ginkgo Biloba for Cognitive Impairment and Dementia. Cochrane Database of Systematic Reviews, CD003120. [Google Scholar] [CrossRef]
|
|
[39]
|
Lu, H., Dang, M., Chen, K., et al. (2023) Naoxin’an Cap-sules Protect Brain Function and Structure in Patients with Vascular Cognitive Impairment. Frontiers in Pharmacology 14, Article ID: 1129125. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Feng, M., Lu, J., May, B.H., et al. (2016) Chinese Herbal Medi-cine for Patients with Vascular Cognitive Impairment No Dementia: Protocol for a Systematic Review. BMJ Open, 6, e010295. [Google Scholar] [CrossRef] [PubMed]
|