类风湿性关节炎疼痛机制的研究进展
Research Progress on the Mechanisms of Pain in Rheumatoid Arthritis
DOI: 10.12677/ACM.2023.13102157, PDF, HTML, XML, 下载: 455  浏览: 769  科研立项经费支持
作者: 周士杰, 崔永辉, 沈 熙, 顾昱航, 虞正权*:苏州大学附属第一医院神经外科,江苏 苏州;温世博:苏州大学苏州医学院,江苏 苏州
关键词: 类风湿性关节炎自身免疫性疾病疼痛机制细胞因子信号转导通路微小核糖核酸靶向治疗Rheumatoid Arthritis Autoimmune Disease Pain Mechanism Cytokines Signaling Pathways microRNA Targeted Therapy
摘要: 类风湿性关节炎是一种可引起机体关节疼痛、肿胀、畸形甚至器官损害的自身免疫性疾病。全球发病普遍,中国发病率为0.42%,全球为0.27%。除关节问题外,该疾病还会导致患者生活质量下降,严重者甚至会给社会带来沉重的经济负担。本文着眼于类风湿性关节炎引起疼痛的潜在机制,从细胞因子、信号转导途径以及微小核糖核酸三方面阐述目前类风湿性关节炎疼痛机制的研究进展,并适当结合说明此疾病的临床诊疗方法,对类风湿性关节炎未来的研究方向做出了相应的展望。
Abstract: Rheumatoid arthritis (RA) is an autoimmune disease that can cause joint pain, swelling, deformity and even organ damage. It is prevalent globally, with an incidence of 0.27% worldwide and 0.42% in China. In addition to joint problems, the disease can also lead to a decline in the quality of life of patients, and even bring a heavy economic burden to society in severe cases. The primary objective of this paper is to delve into the mechanisms responsible for the pain induced by RA. It aims to elu-cidate the current advancements in research concerning cytokines, signaling pathways, and mi-croRNAs. The article appropriately integrates clinical diagnosis and treatment methods for this condition and provides a perspective on future research directions in the field of rheumatoid ar-thritis.
文章引用:周士杰, 崔永辉, 沈熙, 顾昱航, 温世博, 虞正权. 类风湿性关节炎疼痛机制的研究进展[J]. 临床医学进展, 2023, 13(10): 15423-15434. https://doi.org/10.12677/ACM.2023.13102157

1. 引言

众所周知,类风湿性关节炎(rheumatoid arthritis,以下简称RA)是一种全身性的自身免疫性疾病,其临床表现主要为关节肿痛、畸形和退行性变 [1] 。RA不仅影响关节,还会累及机体其他器官,包括心、肾、肺、消化系统、眼睛、皮肤及神经系统等 [2] 。相关研究表明,由于慢性炎症导致动脉粥样硬化的加速,从而增加了心血管事件的风险,RA患者比一般人群更易患心血管疾病,例如冠心病和心脏瓣膜疾病 [3] ;RA引发的炎症和免疫系统异常更有可能导致RA患者出现肺部问题,如间质性肺疾病(Interstitial Lung Disease, ILD)和肺动脉高压。研究表明,RA合并肺间质病发生率高达14.7%,ILD目前是RA最常见的关节外表现 [4] 。RA在全球范围内普遍存在,中国的发病率高达0.42%,全球为0.27% (95%[CI] 0.24%~0.3%) [5] 。除了导致身体功能下降、生活质量下降和社会交往减少外,RA还给患者的家庭和社会带来巨大的经济负担。尽管该病的发病率很高,但导致RA疼痛的机制尚未得到很好的阐明。许多研究发现,在滑膜和骨破坏的过程中涉及多种细胞因子、微小RNA (microRNA)和信号传导途径,导致了病理性疼痛 [6] [7] [8] 。本文回顾了已知和可能的RA疼痛机制,以帮助我们更全面地了解该疾病的发病机制和疼痛机制,促进更好地诊断和治疗RA,尤其是针对病因的靶向治疗方法。

2. 研究现状

2.1. 细胞因子在RA疼痛机制中的作用

2.1.1. IL-1β

IL-1β在炎症细胞因子中扮演着核心角色,参与多种自身免疫性炎症反应和广泛的细胞活动,其中包括细胞生长、分化以及程序性细胞死亡(凋亡)等过程。IL-1β协同IL-1α与IL-18,通过多种下游机制协调免疫反应。除此之外,它还参与调控IL-6和TNF-α的表达,并促使细胞间粘附分子-1 (intercellular cell adhesion molecule-1, ICAM1)的激活 [9] 。总的来说,IL-1β以多种方式在RA的病理过程中发挥其作用。IL-1β触发单核/巨噬细胞的活化,导致炎症加剧。此外,它还刺激成纤维细胞的增殖,导致滑膜组织扩张 [10] 。此外,它还激活软骨细胞,对机体软骨组织造成一定的损伤,并进一步刺激破骨细胞的生成,导致后续的骨吸收 [8] 。IL-1β被认为结合到存在于白细胞及其前体细胞细胞表面以及神经系统内皮细胞的1型IL-1受体(type1 IL-1 receptor, IL-1R1),从而实现细胞内信号传导途径。在动物模型和人体中,IL-1R1由位于脊神经节(dorsal root ganglion, DRG)中的一组特定的伤害感受器表达 [11] 。这些感觉神经元的末端被能够产生IL-1β的免疫细胞包裹,特别是在慢性炎症性疾病的情况下。Mailhot等人的研究系统地证明了IL-1β可以通过激活IL-1R1直接诱导疼痛 [12] 。因此,针对IL-1β/IL-1R1信号通路的方法在慢性炎症性疾病的治疗中具有双重作用:不仅可以缓解炎症和炎症过后的组织破坏,还能同时抑制机体的疼痛。

2.1.2. IL-6

白细胞介素-6 (interleukin-6, IL-6)是一种具有多效性的细胞因子,在与众多的自身免疫性疾病相关的炎症过程和免疫反应中起着关键作用。IL-6的可溶性IL受体或膜受体通常可与IL-6进行结合,进而能够启动由转录激活子(signal transducer and activator of transcription, STAT)和相应信号所介导的胞内信号转导 [13] 。研究表明,IL-6的信号转导一般会通过3型Janus激酶/信号转导子和转录激活子(janus kinase / signal transducer and activator of transcription 3, JAK/STAT3)途径和有丝分裂原活化蛋白激酶(mitogen activated protein kinases, MAPKs)途径介导 [14] 。IL-6/IL-6受体/IL-6Rβ (糖蛋白130,gp130)复合体和JAK促进核传运,从而促使急性期反应蛋白的表达和分泌,最终导致炎症细胞增殖,机体炎症反应的加重以及自身免疫性损伤的剧增 [15] [16] 。几种涉及DRG中IL-6、IL-6受体和gp130等细胞因子的病理性疼痛模型都可以发现其表达量的升高,并且先前诸多研究表明许多神经元、胶质细胞和DRG细胞都会表达gp130 [17] 。Zhou等人的研究已经证明,IL-6可以降低伤害感受器的兴奋阈,导致过敏性疼痛 [18] 。研究表明,RA患者的血清、滑膜液和受损滑膜成纤维细胞中IL-6水平增高。此外,IL-6水平与疾病活动和关节损伤呈正相关,表明针对IL-6信号通路的治疗干预可能有效治疗RA [14] 。我们所熟知的能够抑制IL-6的药物,最常见的莫过于托珠单抗和沙利度胺。它们在减轻疾病活动、改善疼痛症状和抑制RA患者的关节损伤方面显示出疗效 [19] 。托珠单抗是一种针对IL-6R的受体抑制剂,尽管可能存在主要不良心血管事件(major adverse cardiovascular events, MACE)的风险,但相关研究仍与其他针对受体和配体的靶向药物一起进行了针对RA和其他炎症性疾病的临床试验 [20] 。大量研究和临床案例表明,抑制IL-6信号传导已成为管理RA的有效治疗方法。沙利度胺也适用于同样情况。作为一种新型抗IL-6或抗IL-6R药物,沙利度胺能够缓解类风湿性患者触觉过敏和痛觉过敏 [16] 。

2.1.3. IL-33

白细胞介素-33 (interleukin-33, IL-33)是1型白细胞介素超家族细胞因子的成员,作为一种免疫分子发挥作用。众所周知,2型生长刺激表达基因(growth stimulation expressed gene 2, ST2)是IL-33的经典I型跨膜受体,作为IL-33的可溶性受体,其在肥大细胞和T辅助细胞中表达较高。IL-33能够促进炎症反应并诱导Th2细胞相关反应,刺激Th2细胞因子的产生,并通过介导Th2细胞参与免疫应答的过程 [21] 。此外,IL-33还具有各种免疫调节作用,如调节肥大细胞功能,促进肥大细胞产生IL-5和IL-6。IL-33甚至可以执行部分核因子的功能,在一部分细胞核中调控其基因转录 [22] 。在RA疼痛的过程中,免疫复合物首先激活滑膜肥大细胞,进而引起过敏反应,并随后分泌诸如IL-1、肿瘤坏死因子(tumor necrosis factor, TNF)等细胞因子参与其中,造成机体的炎症反应以及随后的疼痛症状 [8] [23] 。临床研究表明,IL-33在RA患者的血清、滑膜液和受损滑膜成纤维细胞中有着较高的表达量。此外,IL-33的表达水平与疾病活动和自身抗体产生的数量呈正相关,这表明IL-33在RA的易感性和治疗反应中可能发挥重要作用 [8] [21] 。与此同时,Milena等人的研究明确IL-33基因多态性可能与RA的易感性和治疗反应有关 [24] 。总之,IL-33可能参与RA的疼痛机制,强调了深入了解IL-33或IL-33/ST2轴在早期检测、治疗甚至预防RA中的重要性 [22] 。

2.1.4. IL-17

随着对IL-17的研究不断深入,我们发现它由多种免疫细胞分泌,这其中就包括我们所熟知的T细胞、肥大细胞、中性粒细胞以及部分淋巴细胞 [25] 。在RA的早期阶段,IL-17能够促进炎症细胞的局部浸润,导致RA的慢性炎症和关节破坏 [26] 。此外,它可以刺激滑膜细胞分泌表皮生长因子(epidermal growth factor, EGF)和抗肝细胞生长因子(anti-hepatocyte growth factor, HGF)等细胞因子,最终促进滑膜疣的形成,从而造成关节损伤。除了参与软骨破坏外,IL-17还有潜力刺激破骨细胞的增殖和分化 [8] 。IL-17通过与NF-κB (nuclear factor-kappa B)受体激活剂的相互作用,破坏NF-κB受体激活剂配体和骨保护素之间的平衡,导致骨侵蚀和关节损伤的加重 [27] 。将IL-17作为治疗靶点在RA中具有实际可行性,因为IL-17在促进炎症、血管新生和破骨细胞生成方面具有生物学功能 [28] 。

2.1.5. NFIL3

核因子–白细胞介素3 (nuclear factor interleukin 3, NFIL3),是调控IL-3的核因子,也是重要的免疫调节因子,其在RA等自身免疫性疾病的发展中举足轻重 [29] 。最近的研究表明,NFIL3在RA患者的外周血和滑膜组织中表达增加,与抗循环瓜氨酸肽(anti-cyclic citrulline peptide, anti-CCP)抗体的增加呈相关趋势,这种NFIL3的高表达与炎性细胞因子和炎症反应的紊乱有关,可能有助于RA的进展 [23] 。相关研究表明,NFIL3可能参与炎症反应、脂质代谢过程、细胞外基质组织和生物钟的调节,并与IL-17和NF-κB信号通路密切相关 [30] 。

在Chen等人的研究中,一些化学趋化因子和金属蛋白酶,例如CXCL8、CCL2、SPP1、MMP1和MMP3在NFIL3水平较高的患者中升高 [26] 。这些促炎因子主要由滑膜成纤维细胞和巨噬细胞分泌,其功能是促进炎症细胞浸润、滑膜组织增殖和机体关节破坏。

2.1.6. TNF-α

肿瘤坏死因子-α (tumor necrosis factor-alpha, TNF-α)作为人类中被最广泛研究的细胞因子,在RA的发病机制中起着非常重要的作用 [8] [31] 。TNF-α可被各种炎症细胞产生,例如巨噬细胞、单核细胞、T细胞以及滑膜成纤维细胞 [32] 。它能刺激软骨细胞合成IL-8,并诱导额外的炎症反应。TNF-α与IL-6和IL-1共同促进免疫细胞的募集、血管通透性、滑膜组织炎症和破骨细胞形成,导致骨破坏 [33] 。除此之外,TNF-α还可以刺激酶类产物如基质金属蛋白酶(matrix metalloproteinases, MMPs)的产生,这些酶类分解软骨的细胞外基质。它还通过与IL-6结合增强骨吸收细胞的分化 [34] [35] 。目前,TNF-α已成为RA的重要治疗靶点,TNF-α抑制剂(TNF-α inhibitors, TNFi)甚至可以有效减轻关节炎的严重程度 [36] [37] 。TNF-α单克隆抗体和可溶性TNF-α受体类似物已被广泛用于RA和其他关节炎的治疗 [38] 。与此同时,TNF-α拮抗剂的关节内注射已经成为治疗炎症性关节炎的新方法。运用此方法可以显著改善RA患者的临床症状,从而提高他们的生活质量 [39] 。

2.1.7. TLIA

肿瘤坏死因子类似配体IA (tumor necrosis factor like ligand IA, TLIA)是肿瘤坏死因子超家族的成员,通过结合其3型受体死亡受体(death receptor 3, DR3)来激活T细胞。作为重要的细胞因子之一,它可以促使促炎细胞因子的分泌,并作为共刺激信号,增强机体T细胞对促炎因子的反应性。最新研究表明,TLIA具有独特的Th1极化特性,可以刺激IL-2、干扰素分析仪以及粒细胞巨噬细胞集落刺激因子等炎症因子的分泌。作为共刺激信号,它甚至可以增强T细胞对2型胰蛋白酶的反应性,促进T细胞增殖、分化和成熟。TLIA可以单独或与IL-23一起作用于Th17细胞,增强IL-17和IL-6的分泌。IL-17进一步刺激IL-1、IL-23和TNF-α的产生,最终促成RA的炎症反应。近期,使用抗TLIA中和抗体治疗在诱导性关节炎小鼠模型中显示出改善关节肿胀症状的效果。此外,该抗体还被观察到可以减轻胶原诱导性关节炎小鼠的爪部红肿、肿胀和关节受累。因此,TLIA可能在缓解RA疼痛方面发挥作用。3型诱饵受体(decoy receptor 3, DcR3)是最近研究发现的肿瘤坏死因子受体超家族成员,它具有一定的可溶性,可以作为Fas配体(Fas ligand, FasL)、LIGHT (lymphotoxin-like,exhibits inducible expression,and competes with herpes simplex virus glycoprotein D for herpesvirus entry mediator,a receptor expressed by T lymphocytes,也被称为TNFSF14,属于TNF超家族的成员之一)和TL1A的受体。研究发现,DcR3在炎症反应和细胞凋亡调节中具有双重功能。一方面,它通过与FasL和淋巴毒素类似物的竞争性结合来抑制这些过程。另一方面,DcR3能够直接调节免疫细胞的活性,包括但不限于促进单核细胞分化为M2型巨噬细胞和破骨细胞,以及诱导树突状细胞的凋亡。研究表明,DcR3可以与TLIA、FasL和淋巴毒素类似物结合,这些配体在小鼠胶原诱导性关节炎的疼痛机制中发挥着十分重要的作用。DcR3通过中和这些配体来减弱它们的作用。显然,DcR3在调节某些自身免疫炎症反应的同时,也有助于自身免疫性疾病的发展。相关分析显示,DcR3血清中的表达水平与抗风湿因子抗体和anti-CCP抗体呈正相关,与补体C3水平呈负相关。这表明DcR3与RA疾病进展中特定的免疫指标之间存在密切关系。因此,对DcR3在RA中的表达及其相应的临床意义进行全面研究,可以帮助我们更深入地了解该疾病的疼痛机制。因此,针对DcR3的靶向治疗为RA的治疗提供了新的希望。

2.1.8. MMPs

MMPs是锌依赖性金属蛋白酶亚家族的成员,由正常组织细胞或肿瘤细胞合成和分泌,依靠存在的锌离子获得催化活性 [40] 。它们主要参与细胞外基质的降解和修饰,在炎症性关节炎中是典型的降解酶。关节软骨由II型胶原组成,主要用来提供拉伸强度,而且其还含有多个单位的硫酸软骨素或角质素聚集体的蛋白多糖聚合物。这些聚集体附着于大量的分子,形成庞大的结构。关节结构的完整性在很大程度上依赖于这些丰富的高分子量聚合物。1,2型聚合酶,即ADAMTS-4和ADAMTS-5,在硫酸软骨素聚糖和角质素聚糖之间发挥关键作用。通过它们的I型凝血调节酶结构域,聚合酶与硫酸基础聚糖结合,促进其定位于蛋白多糖并进行核心蛋白的裂解。我们可以在RA和骨关节炎中观察到聚合酶水平升高。除聚合酶外,MMPs也通过裂解聚糖的方式促进关节退化。例如,MMP-3在N341和F342氨基酸之间裂解聚糖,这一过程被TIMP-3强烈抑制。因此,丰富表达在软骨中的TIMP-3直接抑制聚合酶和MMPs,可以有效防止聚糖的降解并保持关节完整性。作为关节软骨的重要组成部分,胶原也容易受到MMPs介导的蛋白酶降解。具体而言,胶原酶MMP-13偏好攻击II型胶原的三螺旋结构,导致单体碎片的释放。这些释放的碎片进一步由明胶酶MMP-2和MMP-9降解。重要的是,所有这些过程都受到细胞因子信号的严密调控,这些信号触发相应的炎症反应 [41] 。

迄今为止,已经发现20多种类型的MMPs [42] 。近年来,研究者们普遍认为MMP-1、MMP-2、MMP-3、MMP-9和MMP-13与骨关节炎的关节软骨病理学相关,尤其是MMP-3与降解相关 [43] [44] 。MMP-3具有裂解多种细胞外基质成分的能力,不仅可以刺激自身产生,还可以刺激MMP-1的产生,从而建立起一个导致关节损伤的正向反馈环路 [45] 。此外,MMP-13还与II型胶原的降解相关,通过II型激烈分解型胶原和其他靶向基质分子,导致各种病理紊乱,如RA [46] 。此外,还有证据显示,骨关节炎患者的血清和滑囊液中MMP-1、MMP-2、MMP-9和MMP-13的表达量上升,这在调节关节软骨中的细胞外基质蛋白降解方面起着至关重要的作用 [47] 。此外,RA纤维样滑膜细胞(fibroblast-like synoviocytes, FLSs)分泌的MMPs也可以使软骨被破坏。Liu等人发现核受体亚家族1 D组成员1 (nuclear receptor subfamily 1 group D member 1, NR1D1)通过抑制MMP3和MMP13的表达,改善了RA软骨的破坏,因为NR1D1沉默促进了MMP3和MMP13的蛋白质和mRNA水平的表达 [48] 。金属蛋白酶抑制物(tissue inhibitor of metalloproteinase, TIMP)是MMPs的特异性抑制物。在生理条件下,MMP和TIMP之间维持着平衡。然而,在病理条件下,这种动态平衡被破坏,导致关节软骨的恶化 [49] 。在最新的研究中,RA患者的血清中的aMMP (活性MMP)-8、aMMP-8/TIMP-1的比值、TIMP-1、tMMP (总MMP)-9和tMMP-9/TIMP-1的比值均显著升高,被认为对RA具有预后意义 [44] 。至此,针对MMPs的免疫治疗不失为一种缓解疼痛症状甚至治疗RA的新兴策略 [50] 。

2.1.9. TLRs

Toll样受体(Toll-like receptors, TLRs)是调节先天免疫应答的受体分子群 [51] 。信号传导通路包括MyD88 (88型髓样分化因子)蛋白依赖性和其非依赖性途径。MyD88蛋白依赖性途径主要涉及MyD88的C端Toll样/IL-1受体结构域与TLRs、IL-1R和IL-18R的TIR结构域的相互作用。在其N端的死亡结构域中,IL-1R相关蛋白激酶被募集,随后与人类肿瘤坏死因子受体相关因子结合,通过激酶磷酸化激活NF-κB,或通过同构激酶激活蛋白激酶p38和JNK,从而启动下游信号转导,被激活的蛋白质便诱导炎症细胞因子(如IL-1、IL-8、IL-12、TNF-α、干扰素和粘附分子)基因的表达 [52] 。

TRAF6是TNF受体相关因子(TNF receptor associated factor, TRAF)蛋白家族的成员,调节TLRs信号通路以及调控NF-κB和c-Jun氨基末端激酶(c-Jun N-terminal kinase,又被称为应激活化蛋白激酶)信号。TRAF6的缺失可以减轻TLRs信号缺陷,抑制NF-κB的活性,并减少炎症细胞因子的产生 [53] 。总体上,TLRs信号转导的异常可能与RA的疼痛机制有关。阻断TLRs信号便成为了一个实际可行的治疗策略,据证实抗TLR2单克隆抗体(monoclonal antibody, mAb)可以减少RA滑膜组织外植体培养的炎性细胞因子自发释放,以及疾病修饰性抗风湿药物羟氯喹(disease-modifying antirheumatic drug, DMARD)抑制TLR9介导的人类B细胞向浆细胞分化的有效性 [54] [55] 。

2.2. RA介导疼痛的信号转导途径

Wnt信号转导途径是RA形成中重要的信号转导途径。人体骨代谢是一个动态过程,其本质是骨生成和破骨细胞活动之间的动态平衡 [2] 。在此途径中,β-连环蛋白和DK1蛋白是关键因子,参与骨形成和骨吸收。β-连环蛋白是骨代谢的调节因子,而DK1是Wnt信号转导途径的抑制剂,在阻碍成骨细胞的形成过程中尤其重要 [56] [57] 。研究表明,β-连环蛋白的缺乏可能导致骨质疏松和增强破骨细胞增殖。相反,β-连环蛋白的激活促进骨沉积并减少破骨细胞活动 [58] 。Wnt信号转导途径能促进成骨细胞中骨保护素的表达,而骨保护素又能抑制破骨细胞的分化。通过阻碍破骨细胞介导的骨吸收,Wnt信号转导途径有助于增加骨量。尽管具体机制尚不清楚,但研究表明成骨细胞的成骨过程与RA患者的骨和关节损伤发展密切相关。这些发现提示了Wnt/β信号转导途径与RA疼痛之间的潜在联系。

JAK-STAT信号转导途径是另外一种重要的信号转导途径,其包括三个关键部分:酪氨酸激酶(janus kinases, JAKs)、信号转导和转录激活蛋白(signal transducer and activator of transcription proteins, STATs)以及与化学信号相结合的受体。它们在细胞内发生各种蛋白之间的互相作用,并对包括细胞免疫、细胞分裂、细胞死亡和肿瘤生成在内的多种过程起着关键作用 [59] 。人类JAK家族包括JAK1、JAK2、JAK3和TYK2。不论类型如何,所有细胞因子受体都与一个或多个JAKs相关联,从而促进信号转导。JAKs的激活和磷酸化导致STATs的募集,二聚化、核转位及随后的转录响应 [59] [60] 。此信号转导途径与包括RA在内的多种炎症性和自身免疫疾病的发病机制息息相关,IL-6、IL-1、IL-17及TNF-α等细胞因子均利用JAK和STAT来转导胞内信号。近期一些研究表明,JAK/STAT信号转导途径似乎参与骨稳态和调控伤害感知的机制 [8] [61] 。相关的动物实验直接证明了JAK/STAT途径变化与疼痛调节的关联。JAKs抑制剂通过靶向依赖于JAK/STAT信号转导的细胞因子受体家族,在疾病中起着至关重要的作用。托法西替尼作为一种选择性JAK抑制剂,能够选择性抑制JAK1和JAK3,进而缓解RA患者的疼痛便是一个非常经典的例子。目前,此药物也已经获得官方机构批准用于治疗中度至重度RA [61] [62] [63] 。目前,大多数可用的JAK/STAT抑制剂通过竞争性抑制三磷酸腺苷,短暂且可逆地阻止JAK的磷酸化和活化,从而中断STAT的下游信号。

2.3. 微小核糖核酸(microRNAs)在RA介导的疼痛中的参与

MicroRNAs (miRNAs)是由17~22个核苷酸组成的小内源性RNA,在自身免疫性疾病中被证明是潜在的生物标志物或治疗靶点 [64] 。它们由基因组转录并在转录后水平上负调控基因表达 [65] [66] 。目前已经发现了900多种人类miRNAs,每种miRNA都能与200个目标mRNA序列结合。MiRNAs在包括发育、生长、脂质代谢、细胞凋亡和分化等各种细胞过程中发挥关键作用 [65] 。MiRNAs也存在于细胞外液中,包括血清、血浆和滑囊液,通过循环被传送到目标细胞和组织,最终作为细胞间通信的信号分子 [67] 。最近的研究发现,在RA患者的滑囊液组织、关节液和外周血中存在多种miRNAs,如miR-16-5p、miR-23b-3b、miR-124-3p、miR-146a-5p、miR-155-5p和miR-223-3p,这些miRNAs参与调节和传递伤害刺激,暗示它们参与了RA疼痛的发生发展 [64] [68] 。这些miRNAs的下游靶标包括NF-κB、STAT-1、STAT-3、IL-1β、TNF-α、TLRs和MMPs,这些都与RA的发病机制相关。近年来,miR-146a激起了很多人的研究兴趣。Pauley等人通过反转录聚合酶链式反应(reverse transcription polymerase chain reaction, RT-PCR)调查了外周血单个核细胞中miR-16、miR-132、miR-146a和miR-155的表达。他们发现miR-146a的增加表达与RA的疾病活动呈线性关系。此外,他们确定了TRAF6和1型白介素-1受体相关激酶(interleukin-1 receptor-associated kinases 1, IRAK-1)是miR-146a的靶标并在RA组和健康对照组之间没有观察到明显差异。体外实验显示,在抑制miR-146a的两个靶标后,1型单核细胞系的TNF-α产生减少了86%,暗示miR-146a在TNF-α合成调节中的功能性参与,所以我们推测miR-146a的过度表达可能无法充分调控TRAF6和IRAK-1,从而导致RA患者持续产生TNF-α而致病。此外,L等人还证明了miR-146a过表达与TNF-α之间的正相关关系,在体外T细胞中,TNF-α诱导miR-146a过表达。综上所述,miR-146a的过表达可能不能有效抑制TRAF6和IRAK-1,导致在RA患者中持续产生TNF-α,从而促进RA的疼痛。这些发现表明miR-146a在RA的疼痛中的潜在参与,但具体的发生机制还有待探索 [69] 。

近期相关研究还发现了与B细胞亚群相关的衰老相关B细胞(Age-associated B cells, ABCs)。ABCs的扩增与通过TNF-α介导的ERK1/2和JAK-STAT1通路激活FLS的RA的发病机制有着紧密的联系。在RA患者的血液、滑囊液和滑囊液组织中,ABCs水平上升,导致IL-6、MMP-1、MMP-3和MMP-13的产生增加,并促使FLS中干扰素诱导基因的上调,伴随ERK1/2和STAT1的磷酸化增加 [70] 。

3. 结论

作为一种疾病病因和疼痛机制十分复杂的难治性疾病,RA的发病机制需要进一步研究,目前认为与机体免疫和炎症反应异常有关 [1] 。尽管治疗方法不断优化,整体管理也有所改善,但目前对RA的治疗主要以缓解症状为基础,包括疾病修复型抗风湿药物(disease-modifying anti-rheumatic drugs, DMARDs),如常规合成DMARDs (甲氨喋呤、羟氯喹和磺胺二氮嗪)、靶向合成DMARDs (泛JAK和JAK1/2抑制剂)和生物学DMARDs (TNF-α抑制剂、TNF受体抑制剂、IL-6抑制剂、IL-6R抑制剂、B细胞耗尽型抗体和共刺激分子抑制剂) [30] [69] [70] 。目前,RA的治疗重点已转向发现有治疗益处的靶点和相应的干扰炎性因子的细胞内信号转导通路。因此,深入探索和理解细胞因子、miRNAs和信号转导通路在RA的发病和进展中的作用非常重要 [71] 。这种探索可以揭示RA的疼痛机制,并在疼痛初始阶段进行干预,最终旨在实现治疗目标。

4. 展望

RA的研究展望是乐观的,重点是理解和应对与该疾病相关的疼痛。RA不仅会对关节组织造成损害,甚至还可以影响机体的其他器官,给患者带来显著的身体以及情感负担,也会给社会带来不小的经济负担。RA中的疼痛机制涉及多种细胞因子、miRNAs和信号转导通路,这些因素共同促进滑膜和骨的破坏。特定细胞因子如IL-1β、IL-6、IL-33、IL-17、NFIL3、TNF-α和TLIA在RA介导的疼痛的发病机制中发挥作用,为治疗提供了潜在的靶点。此外,MMPs和TLRs在RA疼痛中的作用以及miRNAs在该疾病中的失调也受到了关注。这些因素通过多种信号转导通路在RA的发病机制中发挥作用。

不可否认的是,炎症和疼痛过程的潜在机制以及RA分子的药理效应仍未完全阐明,导致治疗中存在许多令人不满意的结果 [72] 。然而,现代精准医学为根据个体基因组和疾病特征量身定制的治疗提供了有希望的方法,增强了治疗效果并减少了治疗过程中的不良影响 [73] 。新颖的治疗靶点、免疫调节疗法以及神经炎症研究可能会为RA的疼痛提供更加有效和有针对性的治疗。通过可靠的生物标志物进行早期检测和预测疾病进展,可以实现及时干预,防止不可逆的关节损伤。以患者为中心的护理,生活方式干预和综合医学也是管理RA疼痛和改善患者整体生活质量的重要方面 [74] [75] 。

继续探索这些研究领域有可能使RA的治疗更加多样化,并显著提高患者的生活质量。通过理解RA中疼痛的潜在机制并开发有针对性的治疗,我们可以做到长期缓解并更好地控制RA患者的疼痛。毫无疑问,我们仍需要广泛的临床前研究和临床试验来证明这些因素的治疗潜力 [62] 。RA研究的进一步进展可以为更有效和个性化的治疗铺平道路,为受该疾病影响的人们带来更美好的未来。

基金项目

苏州市卫健委医药卫生科技创新项目[基金号:SKY2022002]。

NOTES

*通讯作者。

参考文献

[1] Smith, M.H. and Berman, J.R. (2022) What Is Rheumatoid Arthritis? JAMA, 327, 1194-1194.
https://doi.org/10.1001/jama.2022.0786
[2] Radu, A.F. and Bungau, S.G. (2021) Management of Rheumatoid Arthritis: An Overview. Cells, 10, Article No. 2857.
https://doi.org/10.3390/cells10112857
[3] Aviña-Zubieta, J.A., Choi, H.K., Sadatsafavi, M., Etminan, M., Esdaile, J.M. and Lacaille, D. (2008) Risk of Cardiovascular Mortality in Patients with Rheumatoid Arthritis: A Meta-Analysis of Observational Studies. Arthritis & Rheumatology, 59, 1690-1697.
https://doi.org/10.1002/art.24092
[4] Kadura, S. and Raghu, G. (2021) Rheumatoid Arthritis-Interstitial Lung Disease: Manifestations and Current Concepts in Pathogen-esis and Management. European Respiratory Review, 30, Article ID: 210011.
https://doi.org/10.1183/16000617.0011-2021
[5] Finckh, A., Gilbert, B., Hodkinson, B., Bae, S.C., Thomas, R., Deane, K.D., Alpizar-Rodriguez, D. and Lauper, K. (2022) Global Epidemiology of Rheumatoid Arthritis. Nature Re-views Rheumatology, 18, 591-602.
https://doi.org/10.1038/s41584-022-00827-y
[6] Kawai, V.K., Shi, M., Feng, Q., Chung, C.P., Liu, G., Cox, N.J., et al. (2020) Pleiotropy in the Genetic Predisposition to Rheumatoid Arthritis: A Phenome-Wide Association Study and Inverse Variance-Weighted Meta-Analysis. Arthritis & Rheumatology, 72, 1483-1492.
https://doi.org/10.1002/art.41291
[7] Maeda, K., Yoshida, K., Nishizawa, T., Otani, K., Yamashita, Y., Okabe, H., et al. (2022) Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. International Journal of Molecular Sciences, 23, Article No. 2871.
https://doi.org/10.3390/ijms23052871
[8] Kondo, N., Kuroda, T. and Kobayashi, D. (2021) Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. International Journal of Molecular Sciences, 22, Article No. 10922.
https://doi.org/10.3390/ijms222010922
[9] Lopez-Castejon, G. and Brough, D. (2011) Understanding the Mecha-nism of IL-1β Secretion. Cytokine and Growth Factor Reviews, 22, 189-195.
https://doi.org/10.1016/j.cytogfr.2011.10.001
[10] Pein, M., Insua-Rodríguez, J., Hongu, T., Riedel, A., Meier, J., Wiedmann, L., et al. (2020) Metastasis-Initiating Cells Induce and Exploit a Fibroblast Niche to Fuel Malignant Coloni-zation of the Lungs. Nature Communications, 11, Article No. 1494.
https://doi.org/10.1038/s41467-020-15188-x
[11] Arima, Y., Kamimura, D., Atsumi, T., Harada, M., Kawamoto, T., Nishikawa, N., Stofkova, A., et al. (2015) A Pain- Mediated Neural Signal Induces Relapse in Murine Autoimmune Encephalomyelitis, a Multiple Sclerosis Model. Elife, 4, e08733.
https://doi.org/10.7554/eLife.08733
[12] Mailhot, B., Christin, M., Tessandier, N., Sotoudeh, C., Bretheau, F., Turmel, R., et al. (2020) Neuronal Interleukin-1 Receptors Mediate Pain in Chronic Inflammatory Diseases. Journal of Experimental Medicine, 217, e20191430.
https://doi.org/10.1084/jem.20191430
[13] Karpouzas, G.A., Ormseth, S.R., Hernandez, E. and Budoff, M.J. (2020) Biologics May Prevent Cardiovascular Events in Rheumatoid Arthritis by Inhibiting Coronary Plaque Formation and Stabilizing High-Risk Lesions. Arthritis & Rheumatology, 72, 1467-1475.
https://doi.org/10.1002/art.41293
[14] Boyapati, A., Schwartzman, S., Msihid, J., Choy, E., Genovese, M.C., Burmester, G.R., et al. (2020) Association of High Serum Interleukin-6 Levels with Severe Progression of Rheumatoid Arthritis and Increased Treatment Response Differentiating Sarilumab from Adalimumab or Methotrexate in a Post Hoc Analysis. Arthritis & Rheumatology, 72, 1456-1466.
https://doi.org/10.1002/art.41299
[15] Bell, R.D., Rahimi, H., Kenney, H.M., Lieberman, A.A., Wood, R.W., Schwarz, E.M. and Ritchlin, C.T. (2020) Altered Lymphatic Vessel Anatomy and Markedly Diminished Lymph Clearance in Affected Hands of Patients with Active Rheumatoid Arthritis. Arthritis & Rheumatology, 72, 1447-1455.
https://doi.org/10.1002/art.41311
[16] Atzeni, F., Nucera, V., Masala, I.F., Sarzi-Puttini, P. and Bonitta, G. (2019) Il-6 Involvement in Pain, Fatigue and Mood Disorders in Rheumatoid Ar-thritis and the Effects of Il-6 Inhibitor Sarilumab. Pharmacological Research, 149, Article ID: 104402.
https://doi.org/10.1016/j.phrs.2019.104402
[17] Brenn, D., Richter, F. and Schaible, H.G. (2007) Sensitization of Unmyelinated Sensory Fibers of the Joint Nerve to Mechanical Stimuli by Interleukin-6 in the Rat: An Inflammatory Mechanism of Joint Pain. Arthritis & Rheumatology, 56, 351-359.
https://doi.org/10.1002/art.22282
[18] Zhou, Y.Q., Liu, Z., Liu, Z.H., Chen, S.P., Li, M., Shahveranov, A., Ye, D.W. and Tian, Y.K. (2016) Interleukin-6: An Emerging Regulator of Pathological Pain. Journal of Neuroinflammation, 13, Article No. 141.
https://doi.org/10.1186/s12974-016-0607-6
[19] Onuora, S. (2022) Calprotectin Tracks Tocilizumab-Treated RA. Nature Reviews Rheumatology, 18, Article No. 612.
https://doi.org/10.1038/s41584-022-00851-y
[20] Giles, J.T., Sattar, N., Gabriel, S., Ridker, P.M., Gay, S., Warne, C., et al. (2020) Cardiovascular Safety of Tocilizumab versus Etanercept in Rheumatoid Arthritis: A Randomized Con-trolled Trial. Arthritis & Rheumatology, 72, 31-40.
https://doi.org/10.1002/art.41095
[21] Yi, X.M., Li, M., Chen, Y.D., Shu, H.B. and Li, S. (2022) Reciprocal Reg-ulation of IL-33 Receptor-Mediated Inflammatory Response and Pulmonary Fibrosis by TRAF6 and USP38. Proceed-ings of the National Academy of Sciences of the United States of America, 119, e2116279119.
https://doi.org/10.1073/pnas.2116279119
[22] Yuan, C. (2022) IL-33 in Autoimmunity, Possible Therapeutic Tar-get. International Immunopharmacology, 108, Article ID: 108887.
https://doi.org/10.1016/j.intimp.2022.108887
[23] Wu, S., Jiang, Y., Teng, Y., Liu, X., Zhou, L. and Li, W. (2021) Interleukin-33 Promotes Proliferation and Inhibits Apoptosis of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. Clinical and Experimental Rheumatology, 39, 844- 851.
https://doi.org/10.55563/clinexprheumatol/htpmp0
[24] Iwaszko, M., Wielińska, J., Świerkot, J., Kolossa, K., Sokolik, R., Bugaj, B., et al. (2021) IL-33 Gene Polymorphisms as Potential Biomarkers of Disease Susceptibility and Response to TNF Inhibitors in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Patients. Frontiers in Immunology, 12, Article ID: 631603.
https://doi.org/10.3389/fimmu.2021.631603
[25] Ruiz de Morales, J.M.G., Puig, L., Daudén, E., Cañete, J.D., Pablos, J.L., Martín, A.O., et al. (2020) Critical Role of Interleukin (IL)-17 in Inflammatory and Immune Disorders: An Updated Review of the Evidence Focusing in Controversies. Autoimmunity Reviews, 19, Article ID: 102429.
https://doi.org/10.1016/j.autrev.2019.102429
[26] Du, J., Zheng, L., Chen, S., Wang, N., Pu, X., Yu, D., et al. (2022) NFIL3 and Its Immunoregulatory Role in Rheumatoid Arthritis Patients. Frontiers in Immunology, 13, Article ID: 950144.
https://doi.org/10.3389/fimmu.2022.950144
[27] Adib, M., Taghadosi, M., Tahmasebi, M.N., Sharafat Vaziri, A., Jamshidi, A., Mahmoudi, M. and Farhadi, E. (2023) Anti-Inflammatory Effects of PRIMA-1MET (Mutant p53 Reactivator) Induced by Inhibition of Nuclear Factor-κB on Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Inflam-mopharmacology, 31, 385-394.
https://doi.org/10.1007/s10787-022-01094-9
[28] Taams, L.S. (2020) Interleukin-17 in Rheumatoid Arthritis: Tri-als and Tribulations. Journal of Experimental Medicine, 217, e20192048.
https://doi.org/10.1084/jem.20192048
[29] Chen, Z., Fan, R., Liang, J., Xiao, Z., Dang, J., Zhao, J., et al. (2022) NFIL3 Deficiency Alleviates EAE through Regulating Different Immune Cell Subsets. Journal of Advanced Research, 39, 225-235.
https://doi.org/10.1016/j.jare.2021.10.011
[30] Yang, W., Li, J., Zhang, M., Yu, H., Zhuang, Y., Zhao, L., et al. (2022) Elevated Expression of the Rhythm Gene NFIL3 Promotes the Progression of TNBC by Activating NF-κB Sig-naling through Suppression of NFKBIA Transcription. Journal of Experimental & Clinical Cancer Research, 41, Article No. 67.
https://doi.org/10.1186/s13046-022-02260-1
[31] Sorokin, A.V. and Mehta, N.N. (2022) The Relationship be-tween TNF-Alpha Driven Inflammation, Lipids, and Endothelial Function in Rheumatoid Arthritis: A Complex Puzzle Continues. Cardiovascular Research, 118, 10-12.
https://doi.org/10.1093/cvr/cvab190
[32] Akram, M., Daniyal, M., Sultana, S., Owais, A., Akhtar, N., Zahid, R., et al. (2021) Traditional and Modern Management Strategies for Rheumatoid Arthritis. Clinica Chimica Acta, 512, 142-155.
https://doi.org/10.1016/j.cca.2020.11.003
[33] Noda, K., Tajima, M., Oto, Y., Saitou, M., Yoshiga, M., Otani, K., Yoshida, K. and Kurosaka, D. (2020) How Do Neuropathic Pain-Like Symptoms Affect Health-Related Quality of Life among Patients with Rheumatoid Arthritis? A Comparison of Multiple Pain-Related Parameters. Modern Rheumatology, 30, 828-834.
https://doi.org/10.1080/14397595.2019.1650462
[34] Yokota, K., Sato, K., Miyazaki, T., Aizaki, Y., Tanaka, S., Sekikawa, M., et al. (2021) Characterization and Function of Tumor Necrosis Factor and Interleukin-6-Induced Osteo-clasts in Rheumatoid Arthritis. Arthritis & Rheumatology, 73, 1145-1154.
https://doi.org/10.1002/art.41666
[35] Siegel, R.J., Singh, A.K., Panipinto, P.M., Shaikh, F.S., Vinh, J., Han, S.U., et al. (2022) Extracellular Sulfatase-2 Is Overexpressed in Rheumatoid Arthritis and Mediates the TNF-α-Induced In-flammatory Activation of Synovial Fibroblasts. Cellular & Molecular Immunology, 19, 1185-1195.
https://doi.org/10.1038/s41423-022-00913-x
[36] Chaabo, K. and Kirkham, B. (2015) Rheumatoid Arthri-tis—Anti-TNF. International Immunopharmacology, 27, 180-184.
https://doi.org/10.1016/j.intimp.2015.04.051
[37] Lauper, K., Iudici, M., Mongin, D., Bergstra, S.A., Choquette, D., Codreanu, C., et al. (2022) Effectiveness of TNF- Inhibitors, Abatacept, IL6-Inhibitors and JAK-Inhibitors in 31 846 Pa-tients with Rheumatoid Arthritis in 19 Registers from the “JAK-Pot” Collaboration. Annals of the Rheumatic Diseases, 81, 1358-1366.
https://doi.org/10.1136/annrheumdis-2022-222586
[38] Kalden, J.R. and Schulze-Koops, H. (2017) Immunogenic-ity and Loss of Response to TNF Inhibitors: Implications for Rheumatoid Arthritis Treatment. Nature Reviews Rheuma-tology, 13, 707-718.
https://doi.org/10.1038/nrrheum.2017.187
[39] Zufferey, P., Perreau, M. and So, A. (2015) High Level of An-ti-Drug Antibodies after Intra-Articular Injection of Anti-TNF. Rheumatology (Oxford), 54, 2291-2292.
https://doi.org/10.1093/rheumatology/kev325
[40] de Almeida, L.G.N., Thode, H., Eslambolchi, Y., Chopra, S., Young, D., Gill, S., Devel, L. and Dufour, A. (2022) Matrix Metalloproteinases: From Molecular Mechanisms to Physi-ology, Pathophysiology, and Pharmacology. Pharmacological Reviews, 74, 712-768.
https://doi.org/10.1124/pharmrev.121.000349
[41] Alamgeer, Hasan, U.H., Uttra, A.M., Qasim, S., Ikram, J., Saleem, M. and Niazi, Z.R. (2020) Phytochemicals Targeting Matrix Metalloproteinases Regulating Tissue Degradation in Inflammation and Rheumatoid Arthritis. Phytomedicine, 66, Article ID: 153134.
https://doi.org/10.1016/j.phymed.2019.153134
[42] Laronha, H. and Caldeira, J. (2020) Structure and Function of Human Matrix Metalloproteinases. Cells, 9, Article No. 1076.
https://doi.org/10.3390/cells9051076
[43] Mehana, E.E., Khafaga, A.F. and El-Blehi, S.S. (2019) The Role of Matrix Metalloproteinases in Osteoarthritis Pathogenesis: An Updated Review. Life Sciences, 234, Article ID: 116786.
https://doi.org/10.1016/j.lfs.2019.116786
[44] Zhang, H., Cai, D. and Bai, X. (2020) Macrophages Regulate the Progression of Osteoarthritis. Osteoarthritis Cartilage, 28, 555-561.
https://doi.org/10.1016/j.joca.2020.01.007
[45] Mahmoud, R.K., El-Ansary, A.K., El-Eishi, H.H., Kamal, H.M. and El-Saeed, N.H. (2005) Matrix Metalloproteinases MMP-3 and MMP-1 Levels in Sera and Synovial Fluids in Patients with Rheumatoid Arthritis and Osteoarthritis. Italian Journal of Biochemistry, 54, 248-257.
[46] Hu, Q. and Ecker, M. (2021) Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. International Journal of Molecular Sciences, 22, Article No. 1742.
https://doi.org/10.3390/ijms22041742
[47] Malemud, C.J. (2017) Matrix Metalloproteinases and Synovial Joint Pathology. Progress in Molecular Biology and Trans- lational Science, 148, 305-325.
https://doi.org/10.1016/bs.pmbts.2017.03.003
[48] Liu, H., Zhu, Y., Gao, Y., Qi, D., Zhao, L., Zhao, L., et al. (2020) NR1D1 Modulates Synovial Inflammation and Bone Destruction in Rheumatoid Arthritis. Cell Death & Disease, 11, Article No. 129.
https://doi.org/10.1038/s41419-020-2314-6
[49] Yilmaz, D., Niskanen, K., Gonullu, E., Tervahartiala, T., Gürsoy, U.K. and Sorsa, T. (2023) Salivary and Serum Levels of Neutrophil Proteases in Periodontitis and Rheumatoid Arthritis. Oral Diseases.
https://doi.org/10.1111/odi.14574
[50] Raeeszadeh-Sarmazdeh, M., Do, L.D. and Hritz, B.G. (2020) Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells, 9, Article No. 1313.
https://doi.org/10.3390/cells9051313
[51] Zhang, Y., Liu, J., Wang, C., Liu, J. and Lu, W. (2021) Toll-Like Re-ceptors Gene Polymorphisms in Autoimmune Disease. Frontiers in Immunology, 12, Article ID: 672346.
https://doi.org/10.3389/fimmu.2021.672346
[52] Wang, Y.J., Zhong, X.Y., Wang, X.H., Zhong, Y.H., Liu, L., Liu, F.Y., et al. (2022) Activity of Codonopsiscanescens against Rheumatoid Arthritis Based on TLRs/MAPKs/NF-κB Sig-naling Pathways and Its Mechanism. China Journal of Chinese Materia Medica, 47, 6164-6174.
[53] Lin, Y.J., Anzaghe, M. and Schülke, S. (2020) Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells, 9, Article No. 880.
https://doi.org/10.3390/cells9040880
[54] Arleevskaya, M.I., Larionova, R.V., Brooks, W.H., Bettacchioli, E. and Renaudineau, Y. (2020) Toll-Like Receptors, Infections, and Rheumatoid Arthritis. Clinical Reviews in Allergy & Immunology, 58, 172-181.
https://doi.org/10.1007/s12016-019-08742-z
[55] Emami, J. and Ansarypour, Z. (2019) Receptor Targeting Drug Delivery Strategies and Prospects in the Treatment of Rheumatoid Arthritis. Research in Pharmaceutical Sciences, 14, 471-487.
https://doi.org/10.4103/1735-5362.272534
[56] Maeda, K., Kobayashi, Y., Koide, M., Uehara, S., Oka-moto, M., Ishihara, A., Kayama, T., Saito, M. and Marumo, K. (2019) The Regulation of Bone Metabolism and Disor-ders by Wnt Signaling. International Journal of Molecular Sciences, 20, Article No. 5525.
https://doi.org/10.3390/ijms20225525
[57] Kobayashi, Y., Uehara, S., Udagawa, N. and Takahashi, N. (2016) Featured: Regulation of Bone Metabolism by Wnt Signals. Journal of Biochemistry, 159, 387-392.
https://doi.org/10.1093/jb/mvv124
[58] Weivoda, M.M., Ruan, M., Hachfeld, C.M., Pederson, L., Howe, A., Davey, R.A., et al. (2019) Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Noncanonical cAMP/PKA Pathways. Journal of Bone and Mineral Research, 34, 1546-1548.
https://doi.org/10.1002/jbmr.3740
[59] McLornan, D.P., Pope, J.E., Gotlib, J. and Harrison, C.N. (2021) Current and Future Status of JAK Inhibitors. The Lancet, 398, 803-816.
https://doi.org/10.1016/S0140-6736(21)00438-4
[60] Angelini, J., Talotta, R., Roncato, R., Fornasier, G., Barbiero, G., Dal Cin, L., Brancati, S. and Scaglione, F. (2020) JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present and an Outlook on the Future. Biomolecules, 10, Article No. 1002.
https://doi.org/10.3390/biom10071002
[61] Crispino, N. and Ciccia, F. (2021) JAK/STAT Pathway and Nocicep-tive Cytokine Signalling in Rheumatoid Arthritis and Psoriatic Arthritis. Clinical and Experimental Rheumatology, 39, 668-675.
https://doi.org/10.55563/clinexprheumatol/e7ayu8
[62] McInnes, I.B. and Schett, G. (2017) Pathogenetic Insights from the Treatment of Rheumatoid Arthritis. The Lancet, 389, 2328-2337.
https://doi.org/10.1016/S0140-6736(17)31472-1
[63] Simon, L.S., Taylor, P.C., Choy, E.H., Sebba, A., Quebe, A., Knopp, K.L. and Porreca, F. (2021) The Jak/STAT Pathway: A Focus on Pain in Rheumatoid Arthritis. Seminars in Ar-thritis and Rheumatism, 51, 278-284.
https://doi.org/10.1016/j.semarthrit.2020.10.008
[64] Cunningham, C.C., Wade, S., Floudas, A., Orr, C., McGarry, T., Wade, S., et al. (2021) Serum miRNA Signature in Rheu- matoid Arthritis and “At-Risk Individuals”. Frontiers in Immunology, 12, Article ID: 633201.
https://doi.org/10.3389/fimmu.2021.633201
[65] Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S. and Ghaffari, S.H. (2019) An Overview of microRNAs: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465.
https://doi.org/10.1002/jcp.27486
[66] Green, D., Dalmay, T. and Chapman, T. (2016) Microguards and Mi-cromessengers of the Genome. Heredity (Edinb), 116, 125-134.
https://doi.org/10.1038/hdy.2015.84
[67] Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008) Characterization of microRNAs in Serum: A Novel Class of Biomarkers for Diagnosis of Cancer and Other Diseases. Cell Research, 18, 997-1006.
https://doi.org/10.1038/cr.2008.282
[68] Reyes-Long, S., Cortes-Altamirano, J.L., Clavijio-Cornejo, D., Gutiérrez, M., Bertolazzi, C., Bandala, C., Pineda, C. and Alfaro-Rodríguez, A. (2020) Nociceptive Related microRNAs and Their Role in Rheumatoid Arthritis. Molecular Biology Reports, 47, 7265-7272.
https://doi.org/10.1007/s11033-020-05700-3
[69] Tsuda, S., Sameshima, A., Sekine, M., Kawaguchi, H., Fujita, D., Makino, S., et al. (2020) Pre-Conception Status, Obstetric Outcome and Use of Medications during Pregnancy of Sys-temic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA) and Inflammatory Bowel Disease (IBD) in Japan: Mul-ti-Center Retrospective Descriptive Study. Modern Rheumatology, 30, 852-861.
https://doi.org/10.1080/14397595.2019.1661592
[70] Qin, Y., Cai, M.L., Jin, H.Z., Huang, W., Zhu, C., Bozec, A., Huang, J. and Chen, Z. (2022) Age-Associated B Cells Contribute to the Pathogenesis of Rheumatoid Arthritis by In-ducing Activation of Fibroblast-Like Synoviocytes via TNF-α-Mediated ERK1/2 and JAK-STAT1 Pathways. Annals of the Rheumatic Diseases, 81, 1504-1514.
https://doi.org/10.1136/ard-2022-222605
[71] Burmester, G.R. and Pope, J.E. (2017) Novel Treatment Strategies in Rheumatoid Arthritis. The Lancet, 389, 2338- 2348.
https://doi.org/10.1016/S0140-6736(17)31491-5
[72] Gravallese, E.M. and Firestein, G.S. (2023) Rheumatoid Ar-thritis—Common Origins, Divergent Mechanisms. The New England Journal of Medicine, 388, 529-542.
https://doi.org/10.1056/NEJMra2103726
[73] Huang, J., Fu, X., Chen, X., Li, Z., Huang, Y. and Liang, C. (2021) Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Frontiers in Immunology, 12, Article ID: 686155.
https://doi.org/10.3389/fimmu.2021.686155
[74] Littlejohn, E.A. and Monrad, S.U. (2018) Early Diagnosis and Treatment of Rheumatoid Arthritis. Prim Care, 45, 237- 255.
https://doi.org/10.1016/j.pop.2018.02.010
[75] Bhamidipati, K. and Wei, K. (2022) Precision Medicine in Rheu-matoid Arthritis. Best Practice & Research: Clinical Rheumatology, 36, Article ID: 101742.
https://doi.org/10.1016/j.berh.2022.101742