|
[1]
|
Jiang, X., Xu, Z., Zhang, T., et al. (2021) Whole-Genome-Based Helicobacter pylori Geographic Surveillance: A Visu-alized and Expandable Webtool. Frontiers in Microbiology, 12, Article ID: 687259. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Cho, J., Prashar, A., Jones, N.L., et al. (2021) Helicobacter pylori Infection. Gastroenterology Clinics of North America, 50, 261-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Santos, M.L.C., De Brito, B.B., Da Silva, F.A.F., et al. (2020) Hel-icobacter pylori Infection: Beyond Gastric Manifestations. World Journal of Gastroenterology, 26, 4076-4093. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
苑旭晔, 陈宏桢, 郭金波, 等. 《第六次全国幽门螺杆菌感染处理共识报告(非根除治疗部分)》解读[J]. 河北医科大学学报, 2023, 44(3): 249-251.
|
|
[5]
|
Suzuki, S., Kusano, C., Horii, T., et al. (2022) The Ideal Helicobacter pylori Treatment for the Present and the Future. Digestion, 103, 62-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
赵霞, 徐薇薇, 刘益萌, 等. 中国大陆地区幽门螺杆菌对常用抗生素耐药性的临床分析[J]. 基础医学与临床, 2022, 42(7): 1077-1082.
|
|
[7]
|
Megraud, F., Bruyndonckx, R., Coenen, S., et al. (2021) Helicobacter pylori Resistance to Antibiotics in Europe in 2018 and Its Relationship to Antibiotic Consump-tion in the Community. Gut, 70, 1815-1822. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Versalovic, J., Shortridge, D., Kibler, K., et al. (1996) Mutations in 23S rRNA Are Associated with Clarithromycin Resistance in Helicobacter pylori. Antimicrobial Agents and Chemo-therapy, 40, 477-480. [Google Scholar] [CrossRef]
|
|
[9]
|
Gong, E.J., Ahn, J.Y., Kim, J.M., et al. (2020) Genotypic and Pheno-typic Resistance to Clarithromycin in Helicobacter pylori Strains. Journal of Clinical Medicine, 9, Article No. 1930. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kocazeybek, B., Sakli, M.K., Yuksel, P., et al. (2019) Comparison of New and Classical Point Mutations Associated with Clarithromycin Resistance in Helicobacter pylori Strains Isolated from Dyspeptic Patients and Their Effects on Phenotypic Clarithromycin Resistance. Journal of Medical Microbiology, 68, 566-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Albasha, A.M., Elnosh, M.M., Osman, E.H., et al. (2021) Helicobacter pylori 23S rRNA gene A2142G, A2143G, T2182C, and C2195T Mutations Associated with Clarithromycin Resistance Detected in Sudanese Patients. BMC Microbiology, 21, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Binh, T.T., Shiota, S., Suzuki, R., et al. (2014) Discovery of Novel Mutations for Clarithromycin Resistance in Helicobacter pylori by Using Next-Generation Sequencing. The Journal of Antimicrobial Chemotherapy, 69, 1796-1803. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Miftahussurur, M., Shrestha, P.K., Subsomwong, P., et al. (2016) Emerg-ing Helicobacter pylori Levofloxacin Resistance and Novel Genetic Mutation in Nepal. BMC Microbiology, 16, Article No. 256. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, X.H., Huang, Y.Y., Lu, L.M., et al. (2021) Early Genetic Di-agnosis of Clarithromycin Resistance in Helicobacter pylori. World Journal of Gastroenterology, 27, 3595-3608. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
杜乐, 喻世静, 殷智鑫, 等. 硝基咪唑类药物的研究进展[J]. 化学世界, 2020, 61(2): 92-98.
|
|
[16]
|
Kwon, D.H., El-Zaatari, F.A., Kato, M., et al. (2000) Analysis of rdxA and Involve-ment of Additional Genes Encoding NAD(P)H Flavin Oxidoreductase (FrxA) and Ferredoxin-Like Protein (FdxB) in Metronidazole Resistance of Helicobacter pylori. Antimicrobial Agents and Chemotherapy, 44, 2133-2142. [Google Scholar] [CrossRef]
|
|
[17]
|
Yang, Y.J., Wu, J.J., Sheu, B.S., et al. (2004) The rdxA Gene Plays a More Major Role than frxA Gene Mutation in High-Level Metronidazole Resistance of Helicobacter pylori in Taiwan. Helicobacter, 9, 400-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lee, S.M., Kim, N., Kwon, Y.H., et al. (2018) rdxA, frxA, and Efflux Pump in Metronidazole-Resistant Helicobacter pylori: Their Relation to Clinical Outcomes. Journal of Gas-troenterology and Hepatology, 33, 681-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, S., Wang, X., Wise, M.J., et al. (2020) Mutations of Helicobacter pylori RdxA Are Mainly Related to the Phylogenetic Origin of the Strain and Not to Metronidazole Resistance. The Journal of Antimicrobial Chemotherapy, 75, 3152-3155. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
温国琴. 抗生素耐药性现状及研究进展[J]. 中国处方药, 2022, 20(8): 186-190.
|
|
[21]
|
Ziver-Sarp, T., Yuksel-Mayda, P., Saribas, S., et al. (2021) Point Mutations at gyrA and gyrB Genes of Levofloxacin Resistant Helicobacter pylori Strains and Dual Resistance with Clarithromycin. Clinical Laboratory, 67. [Google Scholar] [CrossRef]
|
|
[22]
|
Rhie, S.Y., Park, J.Y., Shin, T.S., et al. (2020) Discovery of a Novel Mutation in DNA Gyrase and Changes in the Fluoroquinolone Resistance of Helicobacter pylori over a 14-Year Period: A Single Center Study in Korea. Antibiotics (Basel, Switzerland), 9, Article No. 287. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Nauta, K.M., Ho, T.D. and Ellermeier, C.D. (2021) The Penicil-lin-Binding Protein PbpP Is a Sensor of β-Lactams and Is Required for Activation of the Extracytoplasmic Function σ Factor σ(P) in Bacillus thuringiensis. mBio, 12, e00179-21. [Google Scholar] [CrossRef]
|
|
[24]
|
Kwon, Y.H., Kim, J.Y., Kim, N., et al. (2017) Specific Mutations of Penicillin-Binding Protein 1A in 77 Clinically Acquired Amoxicillin-Resistant Helicobacter pylori Strains in Comparison with 77 Amoxicillin-Susceptible Strains. Helicobacter, 22, e12437. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zerbetto De Palma, G., Mendiondo, N., Wonaga, A., et al. (2017) Occurrence of Mutations in the Antimicrobial Target Genes Related to Levofloxacin, Clarithromycin, and Amoxicillin Resistance in Helicobacter pylori Isolates from Buenos Aires City. Microbial Drug Resistance (Larchmont, NY), 23, 351-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Tran, T.T., Nguyen, A.T., Quach, D.T., et al. (2022) Emergence of Amoxicillin Resistance and Identification of Novel Muta-tions of the pbp1A Gene in Helicobacter pylori in Vietnam. BMC Microbiology, 22, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zgurskaya, H.I., Walker, J.K., Parks, J.M., et al. (2021) Multi-drug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Accounts of Chemical Research, 54, 930-939. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cai, Y., Wang, C., Chen, Z., et al. (2020) Transporters HP0939, HP0497, and HP0471 Participate in Intrinsic Multidrug Resistance and Biofilm Formation in Helicobacter pylori by En-hancing Drug Efflux. Helicobacter, 25, e12715. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Rimbara, E., Mori, S., Kim, H., et al. (2018) Mutations in Genes Encoding Penicillin-Binding Proteins and Efflux Pumps Play a Role in β-Lactam Resistance in Helicobacter cinaedi. Antimicrobial Agents and Chemotherapy, 62, e02036- 17. [Google Scholar] [CrossRef]
|
|
[30]
|
Geng, X., Li, W., Chen, Z., et al. (2017) The Bifunctional Enzyme SpoT Is Involved in the Clarithromycin Tolerance of Helicobacter pylori by Upregulating the Transporters HP0939, HP1017, HP0497, and HP0471. Antimicrobial Agents and Chemotherapy, 61, e02011-16. [Google Scholar] [CrossRef]
|
|
[31]
|
Ge, X., Cai, Y., Chen, Z., et al. (2018) Bifunctional En-zyme SpoT Is Involved in Biofilm Formation of Helicobacter pylori with Multidrug Resistance by Upregulating Efflux Pump Hp1174 (gluP). Antimicrobial Agents and Chemotherapy, 62, e00957-18. [Google Scholar] [CrossRef]
|
|
[32]
|
Yonezawa, H., Osaki, T., Hojo, F., et al. (2019) Effect of Helicobac-ter pylori Biofilm Formation on Susceptibility to Amoxicillin, Metronidazole and Clarithromycin. Microbial Pathogenesis, 132, 100-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Penesyan, A., Paulsen, I.T., Gillings, M.R., et al. (2020) Sec-ondary Effects of Antibiotics on Microbial Biofilms. Frontiers in Microbiology, 11, Article No. 2109. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hathroubi, S., Zerebinski, J., Clarke, A., et al. (2020) Helicobacter pylori Biofilm Confers Antibiotic Tolerance in Part via a Protein-Dependent Mechanism. Antibiotics (Basel, Switzerland), 9, Article No. 355. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Bachir, M., Allem, R., Tifrit, A., et al. (2018) Primary Antibiotic Resistance and Its Relationship with cagA and vacA Genes in Helicobacter pylori Isolates from Algerian Patients. Bra-zilian Journal of Microbiology, 49, 544-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Karbalaei, M., Talebi Bezmin Abadi, A. and Keikha, M. (2022) Clinical Relevance of the cagA and vacA s1m1 Status and Antibiotic Resistance in Helicobacter pylori: A Systematic Re-view and Meta-Analysis. BMC Infectious Diseases, 22, Article No. 573. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Oktem-Okullu, S., Cekic-Kipritci, Z., Kilic, E., et al. (2020) Analysis of Correlation between the Seven Important Helicobacter pylori (H. pylori) Virulence Factors and Drug Re-sistance in Patients with Gastritis. Gastroenterology Research and Practice, 2020, Article ID: 3956838. [Google Scholar] [CrossRef] [PubMed]
|