ASAP1与FAK在肿瘤中的研究进展
Research Progress of ASAP1 and FAK in Can-cer
DOI: 10.12677/ACM.2023.134906, PDF, HTML, XML, 下载: 237  浏览: 347  科研立项经费支持
作者: 范 静, 王丰梅*, 郑小影, 徐梦蝶, 冶俊玲:青海大学附属医院病理科,青海 西宁
关键词: ASAP1FAK文献综述ASAP1 FAK Review
摘要: 肿瘤的发生机制复杂,而肿瘤的播散更是一个多方面参与的过程,其中细胞骨架的失调及细胞外基质的破坏、上皮间质转化(Epithelial-mesenchymal transition, EMT)扮演的角色至关重要。ASAP1 (Arf糖激化因子GTP酶活化蛋白)通过定位于细胞膜内外,调整细胞骨架,改变细胞极性,最终导致肿瘤转移。黏着斑激酶(Focal adhesion kinas, FAK)可以与ASAP1结合形成复合物,参与调节细胞外基质(Extracellular matrix, ECM)的成分,影响肿瘤细胞微环境及细胞骨架重组,从而促进肿瘤细胞的转移。本文简要回顾了两种蛋白在一些肿瘤中的表达及新进展,希望能在肿瘤诊断及治疗上提供参考。
Abstract: The pathogenesis of tumor is complex, and the spread of tumor is a multi-faceted process, in which cytoskeletal disorders, destruction of extracellular matrix and epithelial interstitial transformation play crucial roles. ASAP1 (Arf glycoactivator GTPase activating protein) induces tumor metastasis by localizing inside and outside the cell membrane, modulating the cytoskeleton and changing cell polarity. FAK (adhesion spot kinase) can combine with ASAP1 to form a complex, which is involved in the regulation of extracellular matrix (ECM) components, influence tumor cell microenvironment and cytoskeletal recombination, and thus promote tumor cell metastasis. In this paper, the expres-sion of these two proteins in some tumors and their new development are reviewed, hoping to pro-vide reference for tumor diagnosis and treatment.
文章引用:范静, 王丰梅, 郑小影, 徐梦蝶, 冶俊玲. ASAP1与FAK在肿瘤中的研究进展[J]. 临床医学进展, 2023, 13(4): 6450-6456. https://doi.org/10.12677/ACM.2023.134906

1. 引言

恶性肿瘤是全球居民的重要死因之一 [1] 。发现新的分子治疗靶点依旧是癌症治疗方面研究的主要内容。癌症的发生发展机制十分复杂,且受多种通路共同调控,由于调控机制多样,目前缺少理想的抑制药物。而肿瘤的播散是一个多步骤、多机制、多方面参与的过程,其中细胞骨架失调、细胞外基质的破坏和肿瘤细胞周围结缔组织的降解、上皮间质转化的过程至关重要。研究发现ASAP1可以通过调整细胞骨架,改变细胞极性,引起细胞骨架失调,最终导致肿瘤细胞迁徙。FAK与ASAP1参与形成整合素粘附复合物,不止调节细胞骨架,还参与调节细胞外基质从而促进肿瘤侵袭。本文简要阐述了两种蛋白在一些肿瘤中的表达及最新进展。

2. ASAP1结构及其表达

2.1. ASAP1的结构

ASAP1 (Arf糖激化因子GTP酶活化蛋白,也称为ASAP1、DDEF1或AMAP1),编码ArfGTP酶激活蛋白(Arf GAP),位于与肿瘤转移和复发相关的8号染色体长臂(8q24)基因组位点,编码的是一种含有SH3结构域、锚蛋白重复序列和PHI结构域的GTP酶活化蛋白 [2] 。

2.2. ASAP1的功能

ASAP1的过表达已被证明是多种肿瘤的恶性指标。ASAP1有助于调节细胞结构,如肌动蛋白细胞骨架重塑和局灶性粘连(Focal adhesion, FA),这些结构在肿瘤进展中具有关键功能。细胞骨架由微管、中间丝和肌动蛋白丝组成。细胞利用细胞骨架在组织内移动、极化、分裂和维持组织形态。尽管细胞骨架的动态重组在细胞周期、形态发生和细胞运动中至关重要,但这些过程在癌症中经常出错。失调的细胞骨架与肿瘤细胞转移和侵袭有关 [3] 。而局灶性粘连作为细胞骨架和细胞外基质之间的桥梁,在以整合素为核心的ECM信号传导中起主要作用,参与细胞迁移,细胞周期进程,增殖,分化,生长和修复 [4] 。

ASAP1定位于几种不同的肌动蛋白结构,包括粘着斑、侵袭伪足、足小体和圆形背褶皱 [5] 。先前的研究发现ASAP1位于侵袭足,通过富含脯氨酸的序列与皮质肌动蛋白的Src (酪氨酸蛋白激酶)同源3 (SH3)结构域结合,并通过其自身的SH3结构域与帕西林结合 [6] 。随后的研究证明ASAP1是Arf GAP,Arf GAP与几种肌动蛋白细胞骨架结构相关,包括局灶粘连(FA)、足小体、侵犯足、板状足、圆形背褶等。重要的FA蛋白包括FAK、帕西林、他林和长春花蛋白 [7] 。ASAP1通过将肌动蛋白细胞骨架连接到质膜,并作为肌动蛋白细胞骨架调节剂(FAK、Src-非受体酪氨酸蛋白激酶等)的支架枢纽来控制细胞结构。肌动蛋白细胞骨架是细胞极性的决定因素,当被破坏时可损坏细胞与细胞之间的连接,导致上皮–间质转化,引起肿瘤侵袭 [8] 。Arf GAP已被证明存在于整合素粘附复合物中,整合素粘附复合物由整合素、支架蛋白和信号蛋白组成,调节细胞增殖、存活、分化和迁移。ASAP1不仅通过与非肌肉肌球蛋白2A的相互作用调节肌动蛋白细胞骨架重塑,而且在整合素回收中也很重要 [9] ,还可以通过其N-BAR结构域直接结合肌动蛋白,从质膜传递信号来调节肌动蛋白细胞骨架 [10] 。

2.3. ASAP1在肿瘤中的表达

ASAP1在结直肠癌患者中高表达,且与结直肠癌患者的无转移生存率和预后不良相关 [11] 。ASAP1在原发性喉鳞癌中上调,并与淋巴结转移和临床肿瘤分期相关 [12] 。Guo等人通过敲除ASASP1的长链非编码RNA,通过救援实验发现其通过Hedgehog信号通路改善胆管癌的进展和发展 [13] 。最近还在肝肿瘤的细胞质中观察到ASAP1的表达与患者的性别,高组织学分级,血管浸润有关,且与患者的不良预后有关 [14] 。姜娜娜证明ASAP1通过mTOR信号通路来下调甲状腺乳头状癌细胞的自噬水平,这提示ASAP1是参与甲状腺乳头状癌转移的机制之一 [15] 。罗琼则证明ASAP1在胃癌组织中高表达,并与临床病理因素、预后生存密切相关,发现过表达的ASAP1可明显增强胃癌细胞增殖、侵袭与迁移,减少凋亡,其具体的机制可能是通过下调血管内皮生长因子,减弱金属蛋白酶家族的活性和引起间质细胞表达物减少来实现 [16] 。另有研究表明ASAP1不仅参与促进胰腺癌细胞的迁移和转移,具体机制是ARF6 (小GTP酶6)-ASAP1通路通过上调β1-整合素和PD-L1驱动癌细胞侵袭和免疫逃逸,并参与下调E-钙粘蛋白。此外,ASAP1还参与胰腺癌的纤维化过程,Kras突变在胰腺癌中很普遍。在胰腺癌中Kras的突变会导致ASAP1异常过表达,而过度表达的ASAP1与患者的低生存率密切相关 [17] 。ASAP1还参与肿瘤治疗过程中的耐药,在结直肠癌耐药性实验中发现,化疗后组织的ASAP1比化疗前表达上调 [18] 。总的来说,以上众多研究表明,ASAP1通过调节细胞骨架结构、改变细胞极性,参与调节局灶粘附从而起到促进肿瘤转移、侵袭的作用。

3. FAK蛋白及功能

3.1. FAK蛋白结构

粘着斑激酶(FAK)是一种非受体酪氨酸激酶,由染色体区域8q24.3上的蛋白酪氨酸激酶2 (PTK2)基因编码,由一个N端FERM结构域、一个中心激酶结构域、三个富含脯氨酸的区域和一个C端FAT (粘附靶向)结构域组成,其中FAT结构域还包含Tyr925磷酸化位点,其中心激酶结构域包括ATP结合位点及Tyr576和Tyr577结合位点 [19] 。

3.2. FAK的作用机制

FAK通过激酶依赖途径介导细胞运动,还通过FERM,FAT或SH结构域介导的非激酶依赖途径,与p53或ASAP1发生相互作用 [20] 。

FAK的活化主要受FAK二聚化、FERM结构域抑制解除、FAK磷酸化等机制调控。二聚化的过程涉及FERM结构域及c端FAT结构域,二者结合使得Y397位点的自磷酸化,产生Src家族激酶的Src同源性2 (SH2)结构域结合位点,Src家族与磷酸化位点的结合,并介导FAK中心激酶结构域中的Tyr576和Tyr577磷酸化。整合素与Src家族激酶形成复合体,触发FAK酪氨酸(Tyr)397磷酸化增加,促进Src与FAK结合。研究发现Src磷酸化有助于完全激活FAK,这种活化的FAK-Src复合物有助于调节细胞运动的各种信号通路。当ECM与磷脂酰肌醇脂质(Phosphatidylinositol, PI)结合或相互作用时,FERM结构域经历构象变化,从而解除自我抑制作用 [21] [22] 。另外发现可以直接磷酸化中心激酶区域结合位点从而使得FAK活化 [23] 。

3.3. FAK在肿瘤进展中的作用

3.3.1. FAK与整合素粘附复合物

整合素粘附复合物在细胞信号传导中起主要作用,作为细胞骨架和ECM之间的桥梁,从而对细胞迁移以及细胞周期进程,分化,生长和修复产生影响。主要的整合素粘附复合物(Integrin Adhesion Complexes, IAC)有局灶粘连、侵袭体(鬼臼体和侵袭足)、半桥粒(Hemidesmosome, HD)和网状粘连(Reticular adhesion, RA) [24] 。其中整合素可以通过与Src家族激酶形成复合体,触发FAK酪氨酸(Tyr)397磷酸化增加,其磷酸化有助于Src同源性结构域(SH2)和SH3结合。研究发现Src磷酸化有助于完全激活FAK,这种活化的FAK-Src复合物有助于调节细胞运动的各种信号通路 [21] [22] 。

3.3.2. FAK与EMT

EMT已经在多种癌症中被证明是转移的关键过程。在这个过程中,上皮细胞标志物表达(角蛋白细胞和E-钙粘、蛋白)下调,间充质细胞标志物表达(N-钙粘蛋白、波形蛋白和纤连蛋白)上调。这些标志物的变化导致相邻上皮细胞之间的粘附减少,改变了细胞外基质成份 [25] 。导致上皮细胞失去细胞极性,细胞骨架重组,细胞形状变化、细胞伸长和前后极性改变,实现定向迁移,最终导致肿瘤细胞转移 [26] 。

FAK激活是EMT进展的决定性步骤 [25] [27] [28] 。FAK通过协调肌动蛋白细胞骨架的变化以及激活Rac (家族小GTP酶)、Rho (小G蛋白超家族蛋白)和CDC42 GTP酶(小G蛋白Rho亚家族小GTPase蛋白),参与细胞粘附、调节细胞极性,这些蛋白质是细胞极性中的重要调节因子 [29] 。FAK-Src复合物可以降低E-钙粘蛋白的表达,并破坏肿瘤细胞中的细胞间粘附。这表明,FAK通过调节E-钙粘蛋白的转录表达和细胞定位,以调节肿瘤细胞中的EMT和细胞运动 [19] 。在多种肿瘤中发现,通过激活FAK,从而导致EMT的进展。比如膀胱癌中参与上皮间质转化 [26] ,在肝癌中也发现了通过激活FAK来促进EMT的证据 [30] 。结直肠癌中也发现E-钙蛋白上调时FAK有激活 [27] 。

3.3.3. FAK的其他作用

FAK还诱导炎症基因的表达,这些基因的产物抑制了微环境中的抗肿瘤免疫,导致肿瘤的免疫逃逸。研究表明FAK抑制剂可能会使Treg (调节性T细胞)耗竭,并促进CD8+细胞介导的抗肿瘤反应免疫,最终达到抑制肿瘤效果 [31] 。在肿瘤微环境中,FAK可以调节新血管的形成,影响肿瘤的血供 [32] 。FAK参与维持血管内皮细胞的存活、细胞骨架组织和极性,而正常的血管内皮屏障功能也需要FAK激酶活性。从机制上来说,FAK以激酶活性依赖性方式促进血管内皮生长因子受体2 (VEGFR2)的表达,促进肿瘤血管生成 [33] 。VEGF还通过FAK与整合素结合,通过非激酶依赖途径调节血管通透性,具体机制是通过介导β-连环蛋白的磷酸化,分解细胞之间的黏附链接 [34] 。FAK还通过与p53结合降低p53的转录活性并抑制p53激活其下游基因转录,P53在细胞凋亡和细胞死亡时起到重要抑制作用 [31] 。

4. ASAP1和FAK的关系

如前文所述,ASAP1和FAK两种蛋白均参与整合素粘附复合物的形成,而复合物的形成和不同形式的整合素粘附复合物之间的过渡涉及几个信号级联。

FAK可以通过磷酸化酪氨酸上的帕西林来促进整合素粘附复合物的成熟。目前发现FAK通过以下2种机制改变局灶粘连的稳定性。其一是提高Rac1 (Rac family small GTPase 1, RAC1)•GTP水平。FAK活性导致p130CAS (Crk相关底物衔接蛋白家族的成员,phospho Tyr249)的磷酸化。P130CAS招募Crk和其相关的Rac1GEF,从而导致Rac1的激活。另一种机制是通过促进整合素的内吞作用。FAK增强了动力蛋白向整合素粘附复合物的募集,这是整合素内吞作用和随后整合素粘附复合物溶解所必需的 [9] [22] 。

ASAP1是整合素回收所必需的。ASAP1的BAR-PH串联被发现与非肌肉肌球蛋白2A75结合。有助于整合素粘附复合物的调节,细胞扩散和细胞迁移 [35] 。ASAP1通过SH3结构域与FAK相互作用,通过富含脯氨酸的结构域与Crk相互作用,从而靶向FA。实验证明ASAP1敲低减少了成熟FA的数量,并通过减少NM2A (非肌球蛋白2A)和F-肌动蛋白的共定位来破坏应力纤维。FA从新生粘附中成熟需要由收缩应力纤维产生的粘合张力,通过对结合ASAP1和NM2A之间直接相互作用的发现,提出了一个模型,其中粘附相关的ASAP1可以刺激NM2A活性并促进应力纤维的组装,从而导致FA成熟 [9] 。

5. ASAP1和FAK抑制剂

较近的研究发现一种新的Luminacin D类似物HL142通过抑制卵巢癌细胞中的ASAP1及其相互作用蛋白FAK发挥作用。HL142还参与抑制EMT,上调上皮标志物E-钙蛋白和细胞角蛋白-7,并下调间充质标志物vimentin,β-连环蛋白。HL142还使细胞对化疗药物紫杉醇治疗的反应敏感 [36] 。FAK抑制剂已经被广泛研究,在一些晚期实体瘤中取得了良好的疗效。四种FAK抑制剂GSK2256098、PF-00562271、VS-6063和BI 853520在临床前研究中被证明是有效的,目前正在研究使用FAK抑制剂提高疗效的治疗策略 [37] 。研究发现维甲酸通过控制FAK表达和定位从而控制乳腺癌生长及转移,而联合使用FAK抑制剂会增强这些作用,证明FAK抑制剂联合给药可以增加药物治疗敏感性 [38] 。上文提到FAK通过激酶依赖性途径和激酶非依赖性途径起作用。FAK抑制剂仅抑制FAK激酶活性(FAK激酶依赖性途径),但不会阻断激酶非依赖性途径,比如VS6063抑制FAK活性,但不破坏FAK和ASAP1之间的相互作用,其中FAK作为支架蛋白发挥作用,即上文中提到的参与细胞骨架及上皮间质转化的作用。最新发现的抑制剂FAK PROTAC (蛋白水解靶向嵌合分子)阻断FAK激酶活性和破坏FAK与ASAP1之间的相互作用从而抑制卵巢癌细胞侵袭和转移 [20] 。

6. 小结与展望

肿瘤的发生及其转移、播散机制目前仍是研究热点,发现新的分子靶点依旧是当前工作的重中之重。ASAP1在多种肿瘤中表达上调,与患者的不良预后有关,FAK与肿瘤的发生、发展有关,其机制是多样的。关于FAK抑制剂的临床实验研究仍在继续。ASAP1与FAK在多种肿瘤中被发现过表达,关于两者之间的关系及其具体作用机制,尚有待进一步的研究。

基金项目

青海省科技厅应用基础研究项目(2022-ZJ-755),青海省卫健委一般指导性课题(2020-wjzdx-46)。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Brown, M.T., Andrade, J., Radhakrishna, H., et al. (1998) ASAP1, a Phospholipid-Dependent Arf GTPase-Activating Protein That Associates with and Is Phosphorylated by Src. Molecular and Cellular Biology, 18, 7038-7051.
https://doi.org/10.1128/MCB.18.12.7038
[3] Li, X. and Wang, J. (2020) Mechanical Tumor Microenvironment and Transduction: Cytoskeleton Mediates Cancer Cell Invasion and Metastasis. International Journal of Biological Sci-ences, 16, 2014-2028.
https://doi.org/10.7150/ijbs.44943
[4] Petit, V. and Thiery, J.-P. (2000) Focal Adhesions: Structure and Dynamics. Biology of the Cell, 92, 477-494.
https://doi.org/10.1016/S0248-4900(00)01101-1
[5] Liu, Y., Loijens, J.C., Martin, K.H., Karginov, A.V. and Parsons, J.T. (2002) The Association of ASAP1, an ADP Ribosylation Factor-GTPase Activating Protein, with Focal Adhesion Kinase Contributes to the Process of Focal Adhesion Assembly. Molecular Biology of the Cell, 13, 2147-2156.
https://doi.org/10.1091/mbc.e02-01-0018
[6] Hashimoto, S., Hirose, M., Hashimoto, A., et al. (2006) Targeting AMAP1 and Cortactin Binding Bearing an Atypical Src Homology 3/Proline Interface for Prevention of Breast Cancer Invasion and Metastasis. Proceedings of the National Academy of Sciences of the United States of America, 103, 7036-7041.
https://doi.org/10.1073/pnas.0509166103
[7] Wang, K., Hu, Y.-B., Zhao, Y. and Ye, C. (2021) Long Non-Coding RNA ASAP1-IT1 Suppresses Ovarian Cancer Progression by Regulating Hippo/YAP Signaling. Interna-tional Journal of Molecular Medicine, 47, Article No. 44.
https://doi.org/10.3892/ijmm.2021.4877
[8] Royer, C. and Lu, X. (2011) Epithelial Cell Polarity: A Major Gate-keeper against Cancer? Cell Death & Differentiation, 18, 1470-1477.
https://doi.org/10.1038/cdd.2011.60
[9] Vitali, T., Girald-Berlingeri, S., Randazzo, P.A. and Chen, P.-W. (2019) Arf GAPs: A Family of Proteins with Disparate Functions That Converge on a Common Structure, the Integrin Adhe-sion Complex. Small GTPase, 10, 280-288.
[10] Chen, P.-W., Billington, N., Maron, B.Y., et al. (2020) The BAR Domain of the Arf GTPase-Activating Protein ASAP1 Directly Binds Actin Filaments. Journal of Biological Chemistry, 295, 11303-11315.
https://doi.org/10.1074/jbc.RA119.009903
[11] Müller, T., Stein, U., Poletti, A., et al. (2010) ASAP1 Promotes Tumor Cell Motility and Invasiveness, Stimulates Metastasis Formation in Vivo, and Correlates with Poor Survival in Colorectal Cancer Patients. Oncogene, 29, 2393-2403.
https://doi.org/10.1038/onc.2010.6
[12] Li, M., Tian, L., Yao, H., et al. (2014) ASAP1 Mediates the Invasive Phenotype of Human Laryngeal Squamous Cell Carcinoma to Affect Survival Prognosis. Oncology Reports, 31, 2676-2682.
https://doi.org/10.3892/or.2014.3150
[13] Guo, L., Zhou, Y., Chen, Y., et al. (2018) LncRNA ASAP1-IT1 Positively Modulates the Development of Cholangiocarcinoma via Hedgehog Signaling Pathway. Biomedi-cine & Pharmacotherapy, 103, 167-173.
https://doi.org/10.1016/j.biopha.2018.04.015
[14] Bang, S., Jee, S., Son, H., et al. (2022) Clinicopathological Im-plications of ASAP1 Expression in Hepatocellular Carcinoma. Pathology and Oncology Research, 28, Article ID: 1610635.
https://doi.org/10.3389/pore.2022.1610635
[15] 姜娜娜. ASAP1在甲状腺乳头状癌细胞自噬中的作用及其机制[D]: [硕士学位论文]. 郑州: 郑州大学, 2020.
[16] 罗琼. ASAP1基因对胃癌恶性生物学行为影响及其机制研究[D]: [硕士学位论文]. 福州: 福建医科大学, 2020.
[17] Hashimoto, A., Handa, H., Hata, S., et al. (2021) Inhibition of Mutant KRAS-Driven Overexpression of ARF6 and MYC by an eIF4A Inhibitor Drug Improves the Ef-fects of Anti-PD-1 Immunotherapy for Pancreatic Cancer. Cell Communication and Signaling, 19, Article No. 54.
https://doi.org/10.1186/s12964-021-00733-y
[18] Gowrikumar, S., Primeaux, M., Pravoverov, K., et al. (2021) A Claudin-Based Molecular Signature Identifies High-Risk, Chemoresistant Colorectal Cancer Patients. Cells, 10, Article No. 2211.
https://doi.org/10.3390/cells10092211
[19] Golubovskaya, VM. (2014) Targeting FAK in Human Cancer: From Finding to First Clinical Trials. Frontiers in Bioscience-Landmark, 19, 687-706.
https://doi.org/10.2741/4236
[20] Huo, X., Zhang, W., Zhao, G., et al. (2022) FAK PROTAC Inhibits Ovarian Tumor Growth and Metastasis by Disrupting Kinase Dependent and Independent Pathways. Frontiers in Oncology, 12, Article 851065.
https://doi.org/10.3389/fonc.2022.851065
[21] Zhang, Z., Li, J., Jiao, S., Han, G., Zhu, J. and Liu, T. (2022) Func-tional and Clinical Characteristics of Focal Adhesion Kinases in Cancer Progression. Frontiers in Cell and Developmen-tal Biology, 10, Article 1040311.
https://doi.org/10.3389/fcell.2022.1040311
[22] Chuang, H.-H., Zhen, Y.-Y., Tsai, Y.-C., Chuang, C.-H., Hsiao, M., Huang, M.-S. and Yang, C.-J. (2022) FAK in Cancer: From Mechanisms to Therapeutic Strategies. International Journal of Molecular Sciences, 23, Article No. 1726.
https://doi.org/10.3390/ijms23031726
[23] Plaza-Menacho, I., Morandi, A., Mologni, L., Boender, P., Gambacorti-Passerini, C., Magee, A.I., Hofstra, R.M., Knowles, P., McDonald, N.Q. and Isacke, C.M. (2011) Focal Adhesion Kinase (FAK) Binds RET Kinase via Its FERM Domain, Priming a Direct and Reciprocal RET-FAK Transactivation Mechanism. Journal of Biological Chemistry, 286, 17292-17302.
https://doi.org/10.1074/jbc.M110.168500
[24] Mishra, Y.G. and Manavathi, B. (2021) Focal Adhesion Dynamics in Cellular Function and Disease. Cellular Signalling, 85, Article ID: 110046.
https://doi.org/10.1016/j.cellsig.2021.110046
[25] Ma, J., Huang, W., Zhu, C., et al. (2021) MiR-423-3p Activates FAK Signaling Pathway to Drive EMT Process and Tumor Growth in Lung Adenocarcinoma through Targeting CYBRD1. Journal of Clinical Laboratory Analysis, 35, e24044.
https://doi.org/10.1002/jcla.24044
[26] Banyard, J. and Bielenberg, D.R. (2015) The Role of EMT and MET in Cancer Dissemination. Connective Tissue Research, 56, 403-413.
https://doi.org/10.3109/03008207.2015.1060970
[27] Lamouille, S., Xu, J. and Derynck, R. (2014) Mo-lecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196.
https://doi.org/10.1038/nrm3758
[28] Huang, K., Gao, N., Bian, D., et al. (2020) Correlation between FAK and EGF-Induced EMT in Colorectal Cancer Cells. Journal of Oncology, 2020, Article ID: 5428920.
https://doi.org/10.1155/2020/5428920
[29] Wang, N. and Chang, L.-L. (2020) Maspin Suppresses Cell Invasion and Migration in Gastric Cancer through Inhibiting EMT and Angiogenesis via ITGB1/FAK pathway. Human Cell, 33, 663-675.
https://doi.org/10.1007/s13577-020-00345-7
[30] Peng, Y.-S., Syu, J.-P., Wang, S.-D., Pan, P.-C. and Kung, H.-N. (2020) BSA-Bounded p-Cresyl Sulfate Potentiates the Malignancy of Bladder Carcinoma by Triggering Cell Mi-gration and EMT through the ROS/Src/FAK Signaling Pathway. Cell Biology and Toxicology, 36, 287-300.
https://doi.org/10.1007/s10565-019-09509-0
[31] Zhou, J., Yi, Q. and Tang, L. (2019) The Roles of Nuclear Focal Adhesion Kinase (FAK) on Cancer: A Focused Review. Journal of Experimental & Clinical Cancer Research, 38, Arti-cle No. 250.
https://doi.org/10.1186/s13046-019-1265-1
[32] Li, H., Gao, Y. and Ren, C. (2021) Focal Adhesion Kinase Inhib-itor BI 853520 Inhibits Cell Proliferation, Migration and EMT Process through PI3K/AKT/mTOR Signaling Pathway in Ovarian Cancer. Discover Oncology, 12, Article No. 29.
https://doi.org/10.1007/s12672-021-00425-6
[33] Shiau, J.-P., Wu, C.-C., Chang, S.-J., Pan, M.-R., Liu, W., Ou-Yang, F., Chen, F.-M., Hou, M.-F., Shih, S.-L. and Luo, C.-W. (2021) FAK Regulates VEGFR2 Expression and Promotes Angiogenesis in Triple-Negative Breast Cancer. Biomedi-cines, 9, Article No. 1789.
https://doi.org/10.3390/biomedicines9121789
[34] Chen, X.L., Nam, J.O., Jean, C., Lawson, C., Walsh, C.T., Goka, E., Lim, S.-T., Tomar, A., Tancioni, I., Uryu, S., Guan, J.-L., Acevedo, L.M., Weis, S.M., Cheresh, D.A. and Schlaepfer, D.D. (2012) VEGF-Induced Vascular Permeability Is Mediated by FAK. Devel-opmental Cell, 22, 146-157.
https://doi.org/10.1016/j.devcel.2011.11.002
[35] Paul, R., Luo, M., Mo, X., Lu, J., Yeo, S.K. and Guan, J.L. (2020) FAK Activates AKT-mTOR Signaling to Promote the Growth and Progression of MMTV-Wnt1-Driven Basal-Like Mammary Tumors. Breast Cancer Research, 22, Article No. 59.
https://doi.org/10.1186/s13058-020-01298-3
[36] Tanna, C.E., Goss, L.B., Ludwig, C.G. and Chen, P.-W. (2019) Arf GAPs as Regulators of the Actin Cytoskeleton—An Update. International Journal of Molecular Sciences, 20, Arti-cle No. 442.
https://doi.org/10.3390/ijms20020442 Wang, B., Li, H., Zhao, X., et al. (2021) A Luminacin D Analog HL142 Inhibits Ovarian Tumor Growth and Metastasis by Reversing EMT and Attenuating the TGFβ and FAK Pathways. Journal of Cancer, 12, 5654-5663.
https://doi.org/10.7150/jca.61066
[37] Mohanty, A., Pharaon, R.R., Nam, A., et al. (2020) FAK-Targeted and Combination Therapies for the Treatment of Cancer: An Overview of Phase I and II Clinical Trials. Expert Opinion on Investigational Drugs, 29, 399-409.
https://doi.org/10.1080/13543784.2020.1740680
[38] Castro-Guijarro, A.C., Vanderhoeven, F., Mondaca, J.M., et al. (2022) Combination Treatment of Retinoic Acid plus Focal Adhesion Kinase Inhibitor Prevents Tumor Growth and Breast Cancer Cell Metastasis. Cells, 11, Article No. 2988.
https://doi.org/10.3390/cells11192988