具有恒定容量避难所的 Filippov捕食者-食饵模型的全局动力学
Global Dynamics of a Filippov Predator-Prey Model with a Constant-Capacity Refuge
DOI: 10.12677/AAM.2023.123123, PDF, HTML, 下载: 254  浏览: 335 
作者: 蒋 杉, 周 培:长沙理工大学数学与统计学院,湖南 长沙
关键词: 捕食者-食饵系统避难所平衡点稳定性Predator-Prey Model Refuge Equilibrium Stability
摘要: 本文研究了一类具有恒定容量避难所的Filippov捕食者-食饵模型。 应用Filippov方法研究了模型的滑模动力学,并进一步研究了模型的全局动力学。 证明了系统存在唯一的正平衡,且该平衡是 全局渐近稳定的。结果表明,建立适当容量的避难所有利于维持捕食者与被捕食者之间的平衡。
Abstract: In this paper, a predator-prey model with a constant-capacity refuge is studied. We apply Filippov method to study the sliding mode dynamics of the model, and studied the global dynamics furtherly. It is proved that there exists a unique equilibrium and the equilibrium is globally asymptotically stable. The results show that the estab- lishment of a refuge with appropriate capacity is beneficial to maintain the balance between predator and prey.
文章引用:蒋杉, 周培. 具有恒定容量避难所的 Filippov捕食者-食饵模型的全局动力学[J]. 应用数学进展, 2023, 12(3): 1215-1223. https://doi.org/10.12677/AAM.2023.123123

参考文献

[1] 马知恩, 周义仓, 王稳地, 靳祯. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004.
[2] 王高雄. 常微分方程[M]. 北京: 高等教育出版社, 2009.
[3] 李沛娟, 张睿. 对具有恐惧和庇护所的捕食系统的动力学研究[J]. 数学的实践与认识, 2021, 51(18): 281-287.
[4] Gonz lez-Olivares, E. and Ramos-Jiliberto, R. (2003) Dynamic Consequences of Prey Refuges in a Simple Model System: More Prey, Fewer Predators and Enhanced Stability. Ecological Modelling, 166, 135-146.
https://doi.org/10.1016/S0304-3800(03)00131-5
[5] Chen, F., Ma, Z. and Zhang, H. (2012) Global Asymptotical Stability of the Positive Equi- librium of the Lotka-Volterra Prey-Predator Model Incorporating a Constant Number of Prey Refuges. Nonlinear Analysis: Real World Applications, 13, 2790-2793.
https://doi.org/10.1016/j.nonrwa.2012.04.006
[6] Tang, S. and Liang, J. (2013) Global Qualitative Analysis of a Non-Smooth Gause Predator- Prey Model with a Refuge. Nonlinear Analysis: Theory, Methods and Applications, 76, 165- 180.
https://doi.org/10.1016/j.na.2012.08.013
[7] Wu, Y., Chen, F. and Du, C. (2021) Dynamic Behaviors of a Nonautonomous Predator-Prey System with Holling Type II Schemes and a Prey Refuge. Advances in Difference Equations, 2021, Article No. 62.
https://doi.org/10.1186/s13662-021-03222-1
[8] Kar, T.K. (2005) Stability Analysis of a Prey-Predator Model Incorporating a Prey Refuge. Communications in Nonlinear Science and Numerical Simulation, 10, 681-691.
https://doi.org/10.1016/j.cnsns.2003.08.006
[9] Li, W., Chen, Y. and Huang, L. (2022) Global Dynamics of a Filippov Predator-Prey Model with Two Thresholds for Integrated Pest Management. Chaos, Solitons and Fractals, 157, Article ID: 111881.
https://doi.org/10.1016/j.chaos.2022.111881
[10] Chen, X. and Huang, L. (2015) A Filippov System Describing the Effect of Prey Refuge Use on a Ratio-Dependent Predator-Prey Model. Journal of Mathematical Analysis and Applications, 428, 817-837.
https://doi.org/10.1016/j.jmaa.2015.03.045
[11] 马慧丽, 黄立宏, 王佳伏. 有干预措施的Filippov戒烟模型的全局动力学[J]. 经济数学, 2020, 37(3): 208-213.
[12] Filippov, A.F. (1988) Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic Publishers, Dordrecht.
[13] Wang, A. and Xiao, Y. (2013) Sliding Bifurcation and Global Dynamics of a Filippov Epidem- ic Model with Vaccination. International Journal of Bifurcation and Chaos, 23, Article ID: 1350144.
https://doi.org/10.1142/S0218127413501447
[14] Zhu, J. and Liu, H. (2006) Permanence of the Two Interacting Prey-Predator with Refuges. Journal of Northwest University for Nationalities, 27, 1-3.