Lp(a)、NLR、PLR与钙化性主动脉瓣疾病的研究进展
Research Progress of Lipoprotein (a), Neutrophil-Lymphocyte Ratio, Platelet-Lymphocyte Ratio and Calcified Aortic Valve Disease
DOI: 10.12677/ACM.2022.12101316, PDF, HTML, XML, 下载: 369  浏览: 555 
作者: 张 萍*:青海大学研究生院,青海 西宁;张亚萍#:青海省人民医院心血管内科,青海 西宁
关键词: 钙化性主动脉瓣疾病脂蛋白(a)炎症中性粒细胞–淋巴细胞比值血小板–淋巴细胞比值Calcified Aortic Valve Disease Lipoprotein (a) Inflammation Neutrophil-Lymphocyte Ratio Platelet-Lymphocyte Ratio
摘要: 随着全球人口老龄化的日益加重,钙化性主动脉瓣疾病(CAVD)已成为一种常见的心血管疾病。目前尚无药物治疗或延缓疾病的进展,外科主动脉瓣置换术(AVR)是有效治疗手段。CAVD与动脉粥样硬化有着相似的病理生理过程,与脂质代谢异常、慢性炎症密切相关。既往研究证实,脂蛋白(a)、炎症反应在主动脉瓣钙化过程中起着关键作用。本文主要简述了脂蛋白(a)、NLR、PLR与CAVD的相关性及发病机制,为CAVD的预防和治疗提供新的参考依据。
Abstract: Calcified aortic valve disease (CAVD) has become a common cardiovascular disease with the in-creasing aging of the global population. There are currently no drugs to treat or slow the progres-sion of the disease, surgical aortic valve replacement (AVR) is an effective treatment. CAVD has a similar pathophysiological process with atherosclerosis, and is closely related to abnormal lipid metabolism and chronic inflammation. Previous studies have confirmed that lipoprotein (a) and in-flammatory response play key roles in the process of aortic valve calcification. In this paper, the correlation and pathogenesis of CAVD between lipoprotein (a), neutrophil-lymphocyte ratio, plate-let-lymphocyte ratio was briefly reviewed, providing a new reference for the prevention and treat-ment of CAVD.
文章引用:张萍, 张亚萍. Lp(a)、NLR、PLR与钙化性主动脉瓣疾病的研究进展[J]. 临床医学进展, 2022, 12(10): 9104-9110. https://doi.org/10.12677/ACM.2022.12101316

1. 引言

钙化性主动脉瓣疾病(calcified aortic valve disease, CAVD)是仅次于冠心病和高血压的第三大常见心血管疾病 [1],其疾病早期无明显的症状,随着疾病的进展至主动脉瓣狭窄(aortic stenosis, AS)的阶段,以左心室流出道梗阻为特征,导致心输出量不足,最终出现晕厥、呼吸困难、心力衰竭,甚至死亡 [2]。目前尚无药物治疗或延缓疾病的进展,唯一有效的治疗AS的方法是主动脉瓣置换术(aortic valve replacement, AVR) [3]。据美国心脏协会(American Heart Association)统计,65岁以上CAVD患病率为20%~30%,85岁以上CAVD患病率为48%~57% [1]。

长期以来,CAVD被认为是一种被动退行性疾病,是瓣膜的持续磨损和撕裂引起的,但现在的研究表明,该疾病的特征是一个活跃的炎症过程,其次是瓣膜的纤维钙化重塑 [4]。CAVD的病理生理机制和动脉粥样硬化相似,都与脂质代谢、慢性炎症关系密切 [5]。脂蛋白(a) [lipoprotein (a), Lp(a)]、中性粒细胞–淋巴细胞比值(neutrophil-lymphocyte ratio, NLR)、血小板–淋巴细胞比值(platelet-lymphocyte ratio, PLR)是公认的心血管危险因素,与冠心病有着独立的相关性 [6],而三者在CAVD中的作用研究较少。本文将对脂蛋白(a)、炎性细胞在钙化性主动脉瓣疾病的发病机制中的作用,以及对CAVD的预防或治疗方面进行综述。

2. Lp(a)与CAVD的相关性

2.1. Lp(a)概述

Lp(a)是Apo B100和Apo A共价结合的一种富含胆固醇的脂蛋白颗粒。Lp(a)的致动脉粥样硬化、促血栓形成及促炎症特征是Apo B和Apo A所致 [7]。Apo A本身是有一个称为Kringle域的结构组成,Kringle结构域是由三个内部二硫键稳定的三环结构,与纤溶酶原具有结构同源性 [8]。纤溶酶原具有5个不同的Kringle结构域(Kringle [K] I-KV),其中只有KIV、KV存在于Lp(a)编码的LPA基因中。LPA基因有10种不同类型的KIV重复结构域,其中Kringle IV2 (KIV2)的拷贝数因个体而异,导致Apo A的亚型大小多态性。Apo A的分子量由kringle结构域的数量决定,进而影响血浆中Lp(a)的浓度 [7]。Lp(a)位点的遗传变异影响Lp(a)浓度,在许多种族人群中与主动脉瓣钙化相关,也与临床AS的发生率相关。

2.2. Lp(a)是CAVD的危险因素

Lp(a)是公认的心血管危险因素,与CAD和卒中有持续、独立的相关性 [6]。Arsenault等 [9] 进行了一项研究,其目的是确定Lp(a)水平是否与患CAVS的风险增加相关。检测了17553名患者的血清Lp(a)水平,在平均11.7年的随访中,其中118人出现了钙化性主动瓣狭窄(Calcific aortic valve stenosis, CAVS),与Lp(a)低三分位浓度的参与者进行比较,Lp(a)高三分位浓度的参与者发生CAVS的风险更高(95% CI为1.02~2.43)。Stewart等 [10] 对来自心血管健康研究的1329名主动脉硬化患者和88名AS患者与无CAVD的对照组进行比较,经过多因素分析后,Lp(a)与主动脉瓣疾病风险增加密切相关。Zheng等 [11] 在欧洲癌症前瞻性调查–诺福克研究对17,745名患者平均随访19.8年后,发现AS患者403例,在调整年龄、性别、低密度脂蛋白胆固醇和冠状动脉疾病等混杂因素后发现,Lp(a) > 50 mg/dL是AS的独立危险因素(HR为1.70,95% CI为1.33~2.19)。Kamstrup等 [12] 在哥本哈根一般人群研究(n = 87,980)中进行了一项病例对照研究,包括725例CAVD病例和1413例无心血管疾病的对照组,该研究发现随着Lp(a)水平的逐渐升高,CAVD的风险逐渐升高。刘硕霖等 [13] 对652例AS患者进行了3.16年的随访后发现,Lp(a)最高三分位浓度是重度AS的独立危险因素。这些研究结果表明Lp(a)与AS密切相关,血浆Lp(a)可能是未来预测CAVD的标志物,降低Lp(a)浓度可能是预防及治疗CAVD的一项新的临床指标。

3. NLR、PLR与CAVD的相关性

研究发现炎症在动脉粥样硬化和主动脉瓣纤维化和钙化过程中的作用是相似的 [14],并且这两种疾病有着相同的危险因素。中性粒细胞计数增加、血小板计数增加和外周淋巴细胞计数减少已被证实与动脉粥样硬化和急性冠脉综合征的发生有关 [15]。为了预测AS的严重程度和预后,从这些不同组合的细胞计数中发现了生物标志物,如NLR、PLR。

Avci等 [16] 对96例钙化AS患者进行研究,并探讨不同严重程度的AS患者的NLR水平变化,结果发现随着主动脉瓣膜狭窄程度的加重,NLR所示的炎症过程逐渐加重。研究者认为AS和动脉粥样硬化一样是一种炎症过程,炎症标志物的增加也可以在AS中识别出来。Seluck等 [17] 对220例AS患者和157例健康对照者进行研究,两组基线资料相似,结果发现AS组NLR明显高于对照组,提示NLR与AS具有强而独立的相关性。Akdag等 [18] 将AS患者根据经主动脉平均压力梯度分为轻中度AS和重度AS两组,与对照组相比,重度AS组和轻中度AS组的血小板计数、PLR显著升高,重度AS组PLR均高于轻中度AS组,淋巴细胞计数以重度AS组最低,这种相关性表明,PLR可作为评估CAVS严重程度的预测指标。Yayla等 [19] 对304例AS患者PLR、NLR进行了对比,发现重度AS患者NLR、PLR显著高于对照组和轻中度AS患者,且PLR与AS的严重程度存在显著的相关性,是预测AS的标志物。一项回顾性研究 [20] 在对117例重度AS患者接受主动脉瓣置换术后发现,重度AS患者的白细胞计数、PLR均高于对照组,并且PLR的升高与AS的严重程度存在统计学上的显著相关性。上述研究结果均表明NLR、PLR与AS有着密切关系,提示NLR、PLR可以作为辅助诊断AS的血清炎症标志物,未来有望成为预测AS发病率以及主动脉瓣狭窄严重程度的临床指标。

4. CAVD的发病机制

主动脉瓣是主要是由瓣膜内皮细胞、瓣膜间质细胞和细胞外基质组成。越来越多的证据表明,CAVD是由多种因素引起的一种活动性炎症性疾病。其病理机制复杂,包括内皮细胞损伤、脂质浸润、慢性炎症、新生血管形成等引起的瓣膜细胞组成变化,其特点是局部增厚,钙盐沉积,钙结节形成,导致瓣膜功能障碍和血流动力学改变 [21]。

主动脉瓣钙化的进展分为两个阶段。第一阶段为主动脉瓣硬化,细胞外基质分泌增多,部分炎症细胞浸润;第二阶段为主动脉瓣钙化,大量钙盐沉积,形成钙结节,细胞外基质成分异常增多,瓣叶僵硬变形,瓣膜间质细胞数量减少,发生新生血管形成 [22] [23]。

4.1. Lp(a)参与CAVD发病的机制

临床研究表明,Lp(a)是氧化磷脂(oxidized phospholipids, OxPL)在血浆中的主要载体,OxPL在Lp(a)分子的促动脉粥样硬化和炎症性质中起主要作用 [9] [24]。Lp(a)和OxPL可能通过强效赖氨酸结合位点与暴露或裸露的瓣膜表面结合而诱发CAVD。

最近的研究发现,在狭窄的主动脉瓣和易损斑块中存在脂蛋白相关的磷脂酶A2 (lipoprotein-associated phospholipase A2, Lp-PLA2)的表达。Mahmut等 [25] 假设Lp-PLA2在CAVD中表达,可能在瓣膜间质细胞的矿化中发挥作用,因为它可以产生溶血磷脂酰胆碱(lysophosphatidylcholine, LPC),LPC是Lp-PLA2活性的产物,它可以调节炎症,并可以促进血管平滑肌细胞的矿化。LPC被记录在瓣膜间质细胞培养的矿化上,并对CAVD和对照组(非矿化主动脉瓣)的分析显示,矿化主动脉瓣的Lp-PLA2增加了4.2倍。此外,自霉素(Autotaxin,ATX)是一种溶血磷脂酶D,在血浆中运输,并由不同的细胞群分泌。它是以LPC为底物,并产生具有强有力的促炎性质的溶血磷脂酸 [26]。Bouchareb等 [27] 研究发现ATX和溶血磷脂酸参与了AS的过程,ATX是由Lp(a)在主动脉瓣内运输,也由主动脉瓣间质细胞分泌。自霉素–溶血磷脂酸促进了主动脉瓣的炎症和矿化。因此,这种脂蛋白可能是介导动脉粥样硬化和CAVD的独特方面。

4.2. 炎症参与CAVD发病的机制

在过去的几年里,有大量的证据表明炎症和内皮功能障碍在动脉粥样硬化发生中的作用,这些过程也表现在主动脉瓣组织中,与CAVD代表瓣膜间质炎症状态的认识相一致,与动脉粥样硬化类似 [28]。机械应激引起主动脉瓣内皮功能障碍,炎性细胞迁出,如T淋巴细胞和巨噬细胞,Lp(a)沉积,脂蛋白氧化 [29] [30]。

既往研究中对接受AVR的患者进行了血小板功能研究后发现血小板数值明显下降 [31]。血小板不仅是血栓形成的影响因子,而且在炎症和其他与组织重塑相关的过程中发挥积极作用。血小板调节炎症的主要机制之一是通过与白细胞的相互作用和释放血小板提供的高度活跃的介质,包括趋化因子或基质金属蛋白酶 [32]。此外,血小板在将祖细胞和白细胞运输到炎症和血管损伤部位以及动员抗炎、促炎、血管生成因子和微颗粒进入循环方面发挥着重要作用 [33]。血小板计数增加已被证明与动脉粥样硬化和冠状动脉疾病的严重程度有关。一项研究表明,当主动脉瓣存在严重狭窄时,AS患者的血小板活化可能改变循环系统的血流动力学特征 [34]。血小板和中性粒细胞之间的表面接触还增强了中性粒细胞的其他功能,如向组织迁移所需的趋化作用 [35]。结合以上研究结果可以发现,炎症在主动脉瓣钙化过程中起着重要作用,有效的抑制炎症反应可能成为预防主动脉瓣钙化进展的新思路。

5. CAVD的治疗

CAVD是一种非常普遍的疾病,到目前为止,还没有任何医学治疗来阻止它的发展。虽然有一些药物治疗被证明可以抑制动脉粥样硬化疾病的发展,但目前还没有药物治疗被证明可以抑制AS的发展。根据临床试验结果显示,他汀类药物和胆固醇吸收抑制剂的效果虽然得到了验证,但在预防AS的进展方面却没有取得任何效果 [36] [37]。因此,治疗严重CAVD患者的唯一方法是手术或经导管主动脉瓣置换术。但是由于AVR价格昂贵,并不是CAVD患者的最佳选择。研究证实Lp(a)上的OxPL及Lp-PLA2是CAVD的一种遗传和可能的致病因素,并且PLR、NLR与AS及严重程度有明显的相关性,但目前尚未有口服药物与CAVD的研究。

6. 总结与展望

随着人口的老龄化,CAVD的预测和管理将成为一个日益重要的问题。既往研究表明Lp(a)、中性粒细胞、淋巴细胞、血小板与心血管事件的发生发展有着密切的联系,它们均参与了主动脉瓣钙化、炎症反应。本综述中多项研究表明Lp(a)、NLR、PLR与CAVD和AS的严重程度有明显的相关性。血浆Lp(a)、NLR、PLR可以作为新的指标预测CAVD的严重程度,但降低Lp(a)浓度、抑制炎症反应能否延缓CAVD的发生和进展需进一步大量研究证实。

参考文献

[1] Furukawa, K. (2014) Recent Advances in Research on Human Aortic Valve Calcification. Journal of Pharmacological Sciences, 124, 129-137.
https://doi.org/10.1254/jphs.13R05CR
[2] Otto, C. and Prendergast, B. (2014) Aor-tic-Valve Stenosis—From Patients at Risk to Severe Valve Obstruction. The New England Journal of Medicine, 371, 744-756.
https://doi.org/10.1056/NEJMra1313875
[3] Nishimura, R., Otto, C., Bonow, R., et al. (2017) 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Dis-ease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 135, e1159-e1195.
https://doi.org/10.1161/CIR.0000000000000503
[4] Yutzey, K., Demer, L., Body, S., et al. (2014) Calcific Aortic Valve Disease: A Consensus Summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscle-rosis, Thrombosis, and Vascular Biology, 34, 2387-2393.
https://doi.org/10.1161/ATVBAHA.114.302523
[5] Small, A., Kiss, D., Giri, J., et al. (2017) Biomarkers of Cal-cific Aortic Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 623-632.
https://doi.org/10.1161/ATVBAHA.116.308615
[6] Erqou, S., Kaptoge, S., Perry, P., et al. (2009) Lipoprotein (a) Concentration and the Risk of Coronary Heart Disease, Stroke, and Nonvascular Mortality. JAMA, 302, 412-423.
https://doi.org/10.1001/jama.2009.1063
[7] Jang, A., Han, S., Sohn, I., et al. (2020) Lipoprotein (a) and Cardio-vascular Diseases-Revisited. Circulation Journal, 84, 867-874.
https://doi.org/10.1253/circj.CJ-20-0051
[8] Schmidt, K., Noureen, A., Kronenberg, F., et al. (2016) Structure, Function, and Genetics of Lipoprotein (a). Journal of Lipid Research, 57, 1339-1359.
https://doi.org/10.1194/jlr.R067314
[9] Arsenault, B., Boekholdt, S., Dubé, M., et al. (2014) Lipoprotein (a) Lev-els, Genotype, and Incident Aortic Valve Stenosis: A Prospective Mendelian Randomization Study and Replication in a Case-Control Cohort. Circulation. Cardiovascular Genetics, 7, 304-310.
https://doi.org/10.1161/CIRCGENETICS.113.000400
[10] Stewart, B.F., Siscovick, D., Lind, B.K., et al. (1997) Clinical Factors Associated with Calcific Aortic Valve Disease fn1fn1This Study Was Supported in Part by Contracts NO1-HC85079 through HC-850086 from the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland. Journal of the American College of Cardiology, 29, 630-634.
https://doi.org/10.1016/S0735-1097(96)00563-3
[11] Zheng, K., Arsenault, B., Kaiser, Y., et al. (2019) ApoB/ApoA-I Ratio and Lp(a) Associations with Aortic Valve Stenosis Incidence: Insights from the EPIC-Norfolk Prospective Population Study. Journal of the American Heart Association, 8, e013020.
https://doi.org/10.1161/JAHA.119.013020
[12] Kamstrup, P., Hung, M., Witztum, J., et al. (2017) Oxidized Phospholipids and Risk of Calcific Aortic Valve Disease: The Copenhagen General Population Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1570-1578.
https://doi.org/10.1161/ATVBAHA.116.308761
[13] 刘硕霖. 脂蛋白(a)与主动脉瓣钙化的相关性研究[D]: [硕士学位论文]. 北京: 北京协和医学院, 2020.
[14] Losi, M., Brevetti, G., Schiano, V., et al. (2010) Aortic Valve Sclerosis in Patients with Peripheral and/or Coronary Arterial Disease. Echocardiography, 27, 608-612.
https://doi.org/10.1111/j.1540-8175.2009.01109.x
[15] Szolc, P., Niewiara, Ł., Kawulak, M., et al. (2020) Neu-trophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio as Predictors of Coronary Microcirculatory Disease Occurrence and Outcome in Patients with Chronic Coronary Syndrome and No Significant Coronary Artery Stenosis. Wiadomosci lekarskie (Warsaw, Poland: 1960), 73, 2598-2606.
https://doi.org/10.36740/WLek202012108
[16] Avci, A., Elnur, A., Göksel, A., et al. (2014) The Relationship be-tween Neutrophil/Lymphocyte Ratio and Calcific Aortic Stenosis. Echocardiography, 31, 1031-1035.
https://doi.org/10.1111/echo.12534
[17] Küçükseymen, S., Çağırcı, G., Güven, R., et al. (2017) Is Neutrophyl to Lymphocyte Ratio Really a Useful Marker for All Grades of Degenerative Aortic Stenosis? Türk Kardiyoloji Derneği Arşivi, 45, 506-513.
https://doi.org/10.5543/tkda.2017.32389
[18] Akdag, S., Akyol, A., Asker, M., et al. (2015) Plate-let-to-Lymphocyte Ratio May Predict the Severity of Calcific Aortic Stenosis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 21, 3395-3400.
https://doi.org/10.12659/MSM.894774
[19] Yayla, Ç., Açikgöz, S., Yayla, K., et al. (2016) The Association be-tween Platelet-to-Lymphocyte Ratio and Inflammatory Markers with the Severity of Aortic Stenosis. Biomarkers in Medicine, 10, 367-373.
https://doi.org/10.2217/bmm-2015-0016
[20] Edem, E., Reyhanoğlu, H., Küçükukur, M., et al. (2016) Predictive Value of Platelet-to-Lymphocyte Ratio in Severe Degenerative Aortic Valve Stenosis. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 21, 93.
https://doi.org/10.4103/1735-1995.192509
[21] Bian, W., Wang, Z., Sun, C., et al. (2021) Pathogenesis and Mo-lecular Immune Mechanism of Calcified Aortic Valve Disease. Frontiers in Cardiovascular Medicine, 8, Article ID: 765419.
https://doi.org/10.3389/fcvm.2021.765419
[22] Pasipoularides, A. (2016) Calcific Aortic Valve Disease: Part 1—Molecular Pathogenetic Aspects, Hemodynamics, and Adaptive Feedbacks. Journal of Cardiovascular Transla-tional Research, 9, 102-118.
https://doi.org/10.1007/s12265-016-9679-z
[23] Izquierdo-Gómez, M., Hernández-Betancor, I., García-Niebla, J., et al. (2017) Valve Calcification in Aortic Stenosis: Etiology and Diagnostic Imaging Techniques. BioMed Research In-ternational, 2017, Article ID: 5178631.
https://doi.org/10.1155/2017/5178631
[24] Erhart, G., Lamina, C., Lehtimäki, T., et al. (2018) Genetic Factors Ex-plain a Major Fraction of the 50% Lower Lipoprotein(a) Concentrations in Finns. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1230-1241.
https://doi.org/10.1161/ATVBAHA.118.310865
[25] Mahmut, A., Boulanger, M., El Husseini, D., et al. (2014) Elevated Expression of Lipoprotein-Associated Phospholipase A2 in Calcific Aortic Valve Disease: Implications for Valve Mineralization. Journal of the American College of Cardiology, 63, 460-469.
https://doi.org/10.1016/j.jacc.2013.05.105
[26] Sun, W., Li, H., Yu, Y., et al. (2009) MEKK3 Is Required for Lysophosphatidic Acid-Induced NF-κB Activation. Cellular Signalling, 21, 1488-1494.
https://doi.org/10.1016/j.cellsig.2009.05.007
[27] Bouchareb, R., Mahmut, A., Nsaibia, M., et al. (2015) Autotaxin Derived from Lipoprotein (a) and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve. Circulation, 13, 677-690.
https://doi.org/10.1161/CIRCULATIONAHA.115.016757
[28] Libby, P. and Ridker, P. (2004) Inflammation and Atherosclerosis: Role of C-Reactive Protein in Risk Assessment. The American Journal of Medicine, 116, 9S-16S.
https://doi.org/10.1016/j.amjmed.2004.02.006
[29] Miller, J., Weiss, R. and Heistad, D. (2011) Calcific Aortic Valve Stenosis: Methods, Models, and Mechanisms. Circulation Research, 108, 1392-1412.
https://doi.org/10.1161/CIRCRESAHA.110.234138
[30] Bogdanova, M., Kostina, A., Zihlavnikova Enayati, K., et al. (2018) Inflammation and Mechanical Stress Stimulate Osteogenic Differentiation of Human Aortic Valve Interstitial Cells. Frontiers in Physiology, 9, Article No. 1635.
https://doi.org/10.3389/fphys.2018.01635
[31] Açar, G., Kalkan, M., Avci, A., et al. (2015) The Relation of Plate-let-Lymphocyte Ratio and Coronary Collateral Circulation in Patients with Stable Angina Pectoris and Chronic Total Oc-clusion. Clinical and Applied Thrombosis/Hemostasis: Official Journal of the International Academy of Clinical and Ap-plied Thrombosis/Hemostasis, 21, 462-468.
https://doi.org/10.1177/1076029613508599
[32] Langer, H., Weber, C., Gawaz, M., et al. (2013) The Platelet—Thrombosis and Beyond. Thrombosis and Haemostasis, 110, 857-858.
https://doi.org/10.1160/TH13-09-0805
[33] Smyth, S., Mcever, R., Weyrich, A., et al. (2009) Platelet Functions beyond Hemostasis. Journal of Thrombosis and Haemostasis: JTH, 7, 1759-1766.
https://doi.org/10.1111/j.1538-7836.2009.03586.x
[34] Blackshear, J., Wysokinska, E., Safford, R., et al. (2013) Indexes of von Willebrand Factor as Biomarkers of Aortic Stenosis Severity (from the Biomarkers of Aortic Stenosis Severity [BASS] Study). The American Journal of Cardiology, 111, 374-381.
https://doi.org/10.1016/j.amjcard.2012.10.015
[35] Page, C. and Pitchford, S. (2013) Neutrophil and Platelet Com-plexes and Their Relevance to Neutrophil Recruitment and Activation. International Immunopharmacology, 17, 1176-1184.
https://doi.org/10.1016/j.intimp.2013.06.004
[36] Rossebø, A., Pedersen, T., Boman, K., et al. (2008) Intensive Lipid Lowering with Simvastatin and Ezetimibe in Aortic Stenosis. The New England Journal of Medicine, 359, 1343-1356.
https://doi.org/10.1056/NEJMoa0804602
[37] Chan, K., Teo, K., Dumesnil, J., et al. (2010) Effect of Lipid Lowering with Rosuvastatin on Progression of Aortic Stenosis: Results of the Aortic Stenosis Progression Obser-vation: Measuring Effects of Rosuvastatin (Astronomer) Trial. Circulation, 121, 306-314.
https://doi.org/10.1161/CIRCULATIONAHA.109.900027