一类无穷区间上的多点分数阶边值问题解的存在性和唯一性
Existence and Uniqueness of Solutions to a Class of Multi-Point Fractional Boundary Value Problem on the Infinite Interval
DOI: 10.12677/AAM.2017.68115, PDF, HTML, XML, 下载: 1,543  浏览: 2,508 
作者: 郝晓红:安徽信息工程学院,安徽 芜湖;程智龙:苏州科技大学数理学院,江苏 苏州
关键词: 分数阶微分方程多点边值问题非线性抉择定理Banach压缩映像原理Fractional Differential Equation Multi-Point Boundary Value Problem Nonlinear Alternative Theorem Banach Fixed Point Theorem
摘要:

本文讨论一类无穷区间上的多点分数阶边值问题的可解性。通过应用Leray-Schauder非线性抉择定理和Banach压缩映像原理,得到解的存在性和唯一性。最后给出例子说明定理的适用性。

In this paper, we consider the following multi-point boundary value problem of fractional differ-ential equation on the infinite interval ,

By using Leray-Schauder Nonlinear Alternative theorem and Banach fixed point theorem, some results on the existence and uniqueness of solutions can be established.

Abstract:
文章引用:郝晓红, 程智龙. 一类无穷区间上的多点分数阶边值问题解的存在性和唯一性[J]. 应用数学进展, 2017, 6(8): 956-967. https://doi.org/10.12677/AAM.2017.68115

1. 引言

由于分数计算理论和应用的快速发展,分数阶微分方程引起数学爱好者的极大兴趣。其主要应用于流体力学、分数控制系统、神经分数模型、力学、物理学、黏弹力学、化学工程和经济等方面。分数计算理论是解决微分、积分方程及其它特殊方程的有效工具。

但是分数阶微分方程边值问题的研究还处于初级阶段,尤其是无穷区间上的分数阶微分方程边值问题尚不多见。在以往的参考文献中,多是以下积分边值条件的模型。 [1] 中,赵和葛研究了无穷区间上的分数阶边值问题

D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , t ( 0 , ) , α ( 1 , 2 ) ,

u ( 0 ) = 0 , lim t D 0 + α 1 u ( t ) = β u ( ξ ) ,

其中, 0 < ξ < D 0 + α 是Riemann-Liouvill分数阶导数。

[2] 中,Nieto研究了以下边值问题

D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , t [ 0 , 1 ] , n 1 < α < n , n N ,

u ( 0 ) = u ( 0 ) = u ( 0 ) = = u n 2 ( 0 ) = 0 , u ( 1 ) = i = 1 m 2 a i u ( η i ) ,

其中, n 2 , a i > 0 , 0 < η 1 < η 2 < < η m 2 < 1 , f C ( [ 0 , 1 ] × R , R ) D R 0 + α , D C 0 + α 分别是Riemann-Liouvill分数阶导数和Caputo分数阶导数。

然而,据作者所知,到目前还没有文献研究以下无穷区间上的分数阶边值问题

D 0 + α u ( t ) = f ( t , u ( t ) , D 0 + α 1 u ( t ) ) , t J : = ( 0 , ) , n 1 < α < n , (1.1)

u ( 0 ) = D 0 + α 2 u ( 0 ) = D 0 + α 3 u ( 0 ) = = D 0 + α ( n 1 ) u ( 0 ) = 0 , D 0 + α 1 u ( ) = i = 1 m α i D 0 + α 1 u ( ξ i ) (1.2)

其中 n 1 < α n , n N , n > 2 , 0 < ξ 1 < ξ 2 < < ξ m < + , α i > 0 , i = 1 , 2 , , m f C ( J × R × R , R ) D 0 + α I 0 + α 分别是Riemann-Liouvill分数阶导数和分数阶积分。

α = n 时,问题(1.1) (1.2)是 n 阶多点边值问题,很多文献已做过研究,如 [3] [4] [5] [6] 。

本文应用非线性抉择定理和Banach压缩映像原理研究边值问题(1.1) (1.2)的解的存在性和唯一性。

本文结构如下:第二部分给出背景材料和预备知识;第三部分给出所研究问题(1.1) (1.2)的解的存在性和唯一性;最后给出例子说明我们的主要结论。

2. 预备知识

定义2.1 ( [7] )函数 y : ( 0 , + ) R α 阶Riemann-Liouville分数阶积分为

I 0 + α y ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s , t > 0 ,

其中 α > 0 Γ ( ) 为gamma函数。

定义2.2 ( [7] )函数 y : ( 0 , + ) R α 阶Riemann-Liouville分数阶导数为

D 0 + α y ( t ) = 1 Γ ( n α ) ( d d t ) n 0 t y ( s ) ( t s ) α n + 1 d s ,

其中 α > 0 Γ ( ) 为gamma函数, n = [ α ] + 1

引理2.1 ( [7] )设 f C [ 0 , 1 ] , q p 0 ,则

D 0 + p I 0 + q f ( t ) = I 0 + q p f ( t ) .

引理2.2 ( [7] )若 α > 0 ,则分数阶微分方程 D 0 + α u ( t ) = 0 当且仅当

u ( t ) = c 1 t α 1 + c 2 t α 2 + + c n t α n ,

其中 c i R , i = 1 , 2 , , n ,其中 n 是大于等于 α 的最小整数。

引理2.3 ( [8] )若 α > 0 , u C ( 0 , 1 ) L ( 0 , 1 ) , D c 0 + α u ( t ) C ( 0 , 1 ) L ( 0 , 1 ) ,存在 c i , i = 1 , 2 , , N 使得

I 0 + α D 0 + α u ( t ) = u ( t ) + c 1 t α 1 + c 2 t α 2 + + c N t α N ,

其中 c i R , i = 0 , 1 , 2 , , N 1 N = [ α ] + 1

定义空间

X = { u ( t ) C ( J , R ) : sup t J | u ( t ) | 1 + t α 1 < + , D 0 + α 1 u ( t ) C ( J , R ) , sup t J | D 0 + α 1 u ( t ) | < + }

模为 u = max { sup t J | u ( t ) | 1 + t α 1 , sup t J | D 0 + α 1 u ( t ) | }

定理2.1 ( [9] )设 X 是一个实Banach空间, Ω X 中的有界开子集, 0 Ω , F : Ω ¯ X 是一个全连续算子。则 x Ω , λ > 1 , s . t . F ( x ) = λ x ,或存在不动点 x Ω ¯

引理2.4 ( [9] ) ( X , · ) 是Banach空间。

证明:设 { u n } n = 1 是空间 ( X , · ) 中的Cauchy序列,则对 ε > 0 , N > 0 s . t . t J n , m > N ,有 | u n ( t ) 1 + t α 1 u m ( t ) 1 + t α 1 | < ε ,则 { u n ( t ) 1 + t α 1 } n = 1 一致收敛于 u ( t ) 1 + t α 1 u ( t ) X 。并且 { D 0 + α 1 u n } n = 1 一致收敛于 v X ,并且 sup t J | v ( t ) | < +

接下来证明 v = D 0 + α 1 u

sup t J | u ( t ) | 1 + t α 1 = M 0 2 ,则对于常数 M 0 2 > 0 , t J , N > 0 s . t . n > N 时,有

| u n ( t ) 1 + t α 1 u ( t ) 1 + t α 1 | < M 0 2 .

M i = sup t J | u i ( t ) | 1 + t α 1 , i = 1 , 2 , , N M = max { M i , i = 1 , 2 , , N } ,易得 | u n ( t ) | 1 + t α 1 M , n = 1 , 2 , 。于是对 t J , n 1 < α < n ,有

| 0 1 ( t s ) n 1 α ( 1 + s α 1 ) | u n ( s ) | 1 + s α 1 d s | M 0 t ( t s ) n 1 α ( 1 + s α 1 ) d s = M [ t n α 0 1 ( 1 τ ) n 1 α d τ + t n 1 0 1 ( 1 τ ) n 1 α τ α 1 d τ ] = M n α t n α + B ( α , n α ) M t n 1 ,

其中, B ( α , n α ) 是Beta函数。根据 { D 0 + α 1 u n ( t ) } n = 1 的一致收敛性及Lebesgue控制收敛定理,可得

v ( t ) = lim n + D 0 + α 1 u n ( t ) = lim n + 1 Γ ( n α ) ( d d t ) n 1 0 t ( t s ) n 1 α ( 1 + s α 1 ) u n ( s ) 1 + s α 1 d s = 1 Γ ( n α ) ( d d t ) n 1 0 t ( t s ) n 1 α ( 1 + s α 1 ) u ( s ) 1 + s α 1 d s = D 0 + α 1 u ( t ) .

α = n 时,有

v ( t ) = lim n + u n ( n 1 ) ( t ) = ( d d t ) n 1 lim n + u n ( t ) = u ( n 1 ) ( t ) .

所以, ( X , · ) 是Banach空间。

注意到Arzela-Ascoli定理不能在空间 X 中使用,为此,引入以下改进的紧凑型标准。

引理2.5 ( [10] )设 Z Y 是有界集,那么,当下述条件成立时, Z Y 中是相对紧的:

(i) 对 u ( t ) Z u ( t ) 1 + t α 1 D 0 + α 1 u ( t ) J 的任何紧区间上是等度连续的。

(ii) 对于给定的 ε > 0 常数 T = T ( ε ) > 0 s . t . t 1 , t 2 T , u ( t ) Z ,有

| u ( t 1 ) 1 + t 1 α 1 u ( t 2 ) 1 + t 2 α 1 | < ε , | D 0 + α 1 u ( t 1 ) D 0 + α 1 u ( t 2 ) | < ε .

3. 主要结论

A = ( 1 + 1 Γ ( α ) ( 1 i = 1 m α i ) ) 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s ,

B = ( 1 + 1 Γ ( α ) ( 1 i = 1 m α i ) ) 0 c ( s ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s .

假设以下条件成立:

(H1)存在非负函数 a ( t ) , b ( t ) , c ( t ) L 1 ( J ) , s . t .

| f ( t , x , y ) | a ( t ) | x | + b ( t ) | y | + c ( t ) , 0 + ( ( 1 + t α 1 ) a ( t ) + b ( t ) ) d t < Γ ( α ) , 0 + c ( t ) d t < + .

(H2)假设 i = 1 m α i < 1 , A < 1

引理3.1 假设(H1) (H2)成立。问题(1.1) (1.2)等价于积分方程

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) [ i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s ] t α 1 . (3.1)

证明:由条件(H1),

0 | f ( t , u ( t ) , D 0 + α 1 u ( t ) ) | d t u 0 ( ( 1 + t α 1 ) a ( t ) + b ( t ) ) d t + 0 c ( t ) d t < + .

所以(3.1)定义有意义。

根据引理2.3,

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + c 1 t α 1 + c 2 t α 2 + + c n t α n . (3.2)

由条件(1.2),可得

c 2 = c 3 = = c n = 0. (3.3)

c 1 = 1 Γ ( α ) ( 1 i = 1 m α i ) [ i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s ] . (3.4)

将(3.3) (3.4)带入(3.2),得

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) [ i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s ] t α 1 . (3.5)

定义积分算子 T : X X

T u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) [ i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s ] t α 1 . (3.6)

引理3.1证明算子 T 的不动点就是问题(1.1) (1.2)的解。

引理3.2 假设(H1) (H2)成立。则 T : Ω ¯ X 一致连续。其中 Ω = { u X , u < R }

R B 1 A , A < 1.

证明:第一步:证明 T : Ω ¯ X 是相对紧的。

方便起见,在这一步中,记

G = 1 Γ ( α ) ( 1 i = 1 m α i ) | i = 1 m α i 0 ξ i f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 0 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s |

V Ω ¯ 中的子集, I J 是一个紧区间, t 1 , t 2 I , t 1 < t 2 ,则对 u ( t ) V ,有

| T u ( t 2 ) 1 + t 2 α 1 T u ( t 1 ) 1 + t 1 α 1 | | 1 Γ ( α ) 0 t 2 ( t 2 s ) α 1 1 + t 2 α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 1 Γ ( α ) 0 t 1 ( t 2 s ) α 1 1 + t 2 α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s + 1 Γ ( α ) 0 t 1 ( t 2 s ) α 1 1 + t 2 α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s 1 Γ ( α ) 0 t 1 ( t 1 s ) α 1 1 + t 1 α 1 f ( s , u ( s ) , D 0 + α 1 u ( s ) ) d s | + G | t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | 1 Γ ( α ) t 1 t 2 ( t 2 s ) α 1 1 + t 2 α 1 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) 0 t 1 | ( t 2 s ) α 1 1 + t 2 α 1 ( t 1 s ) α 1 1 + t 1 α 1 | | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + G | t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | ,

且有

| D 0 + α 1 T u ( t 2 ) D 0 + α 1 T u ( t 1 ) | t 1 t 2 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s .

注意到对 u ( t ) V ,有 f ( t , u ( t ) , D 0 + α 1 u ( t ) ) I 中有界。

故得 T u ( t ) 1 + t α 1 , D 0 + α 1 T u ( t ) I 中一致连续。

接下来证明对 u ( t ) V ,有 f ( t , u ( t ) , D 0 + α 1 u ( t ) ) 满足引理2.5的条件(ii)。

根据条件(H1),

0 | f ( t , u ( t ) , D 0 + α 1 u ( t ) ) | d t u 0 ( ( 1 + t α 1 ) a ( t ) + b ( t ) ) d t + 0 c ( t ) d t < A u + B R ,

于是,对 ε > 0 ,存在常数 L > 0 ,使得

L | f ( t , u ( t ) , D 0 + α 1 u ( t ) ) | d t < ε . (3.7)

另一方面,因为 lim t + t α 1 1 + t α 1 = 1 ,故 T 1 > 0 , s . t . t 1 , t 2 T 1 ,有

| t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | | 1 t 2 α 1 1 + t 2 α 1 | + | 1 t 1 α 1 1 + t 1 α 1 | < ε . (3.8)

类似地,因为 lim t + ( t L ) α 1 1 + t α 1 = 1 ,故 T 2 > L > 0 , s . t . t 1 , t 2 T 2 , 0 s L ,有

| ( t 2 s ) α 1 1 + t 2 α 1 ( t 1 s ) α 1 1 + t 1 α 1 | | 1 ( t 2 s ) α 1 1 + t 2 α 1 | + | 1 ( t 1 s ) α 1 1 + t 1 α 1 | | 1 ( t 2 L ) α 1 1 + t 2 α 1 | + | 1 ( t 1 L ) α 1 1 + t 1 α 1 | < ε . (3.9)

T > max { T 1 , T 2 } ,则对 t 1 , t 2 T ,根据(3.7)~(3.9),可得

| T u ( t 2 ) 1 + t 2 α 1 T u ( t 1 ) 1 + t 1 α 1 | 1 Γ ( α ) 0 L | ( t 2 s ) α 1 1 + t 2 α 1 ( t 1 s ) α 1 1 + t 1 α 1 | | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) L t 1 ( t 1 s ) α 1 1 + t 1 α 1 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) L t 2 ( t 2 s ) α 1 1 + t 2 α 1 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + G | t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | max | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | Γ ( α ) 0 L | ( t 2 s ) α 1 1 + t 2 α 1 ( t 1 s ) α 1 1 + t 1 α 1 | d s

+ 1 Γ ( α ) L | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) L | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + G | t 2 α 1 1 + t 2 α 1 t 1 α 1 1 + t 1 α 1 | max | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | Γ ( α ) L ε + 2 ε Γ ( α ) + G ε = ( max | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | Γ ( α ) L + 2 Γ ( α ) + G ) ε ,

且有

| D 0 + α 1 T u ( t 2 ) D 0 + α 1 T u ( t 1 ) | t 1 t 2 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s L | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s < ε .

根据引理2.5知, T V 是相对紧的。

第二步:证明 T : Ω ¯ X 连续。

u n , u Ω ¯ , n = 1 , 2 , ,且当 n + 时,有 u n u 0 ,则

| T u n ( t ) 1 + t α 1 T u ( t ) 1 + t α 1 | 1 Γ ( α ) 0 t | f ( s , u n ( s ) , D 0 + α 1 u n ( s ) ) | d s + 1 Γ (α) 0 t | f ( s,u (s) , D 0 + α−1 u ( s ) ) | d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i | f ( s , u n ( s ) , D 0 + α 1 u n ( s ) ) | d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s + 1 Γ ( α ) 0 | f ( s , u n ( s ) , D 0 + α 1 u n ( s ) ) | d s + 1 Γ ( α ) 0 | f ( s , u ( s ) , D 0 + α 1 u ( s ) ) | d s

2 R Γ ( α ) 0 t ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 Γ ( α ) 0 t c ( s ) d s + 2 R i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s + 2 Γ ( α ) ( 1 i = 1 m α i ) 0 c ( s ) d s + 2 R Γ ( α ) ( 1 i = 1 m α i ) 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s 2 R Γ ( α ) A + 2 Γ ( α ) B < + .

且有

| T u n ( t ) 1 + t α 1 T u ( t ) 1 + t α 1 | 2 R 0 t ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 0 t c ( s ) d s + 2 R i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s + 2 Γ ( α ) ( 1 i = 1 m α i ) 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 2 Γ ( α ) ( 1 i = 1 m α i ) 0 c ( s ) d s 2 R A + 2 B < + .

根据Lebesgue控制收敛定理, T 连续。

综上, T 全连续。

定理3.1 设(H1),(H2)成立,则边值问题(1.1) (1.2)至少有一个解 u X

证明: Ω 如引理3.2中定义。设 u Ω , λ > 1 , s . t . T u = λ u ,则

| T u ( t ) | 1 + t α 1 1 Γ ( α ) u 0 t ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 1 Γ ( α ) 0 t c ( s ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) u 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) 0 c ( s ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) u 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s

( 1 Γ ( α ) + 1 Γ ( α ) ( 1 i = 1 m α i ) ) u 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) u 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s + ( 1 Γ ( α ) + 1 Γ ( α ) ( 1 i = 1 m α i ) ) 0 c ( s ) d s A R + B A B 1 A + B = R ,

且有

| D 0 + α 1 T u ( t ) | u 0 t ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 0 t c ( s ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) u 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + 1 Γ ( α ) ( 1 i = 1 m α i ) 0 c ( s ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) u 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s

( 1 + 1 Γ ( α ) ( 1 i = 1 m α i ) ) u 0 ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) u 0 ξ i ( ( 1 + s α 1 ) a ( s ) + b ( s ) ) d s + i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i c ( s ) d s + ( 1 + 1 Γ ( α ) ( 1 i = 1 m α i ) ) 0 c ( s ) d s A R + B = R .

λ R = λ u = T u = max { sup | T u ( t ) | 1 + t α 1 , sup | D 0 + α 1 T u ( t ) | } R .

得到 λ 1 , 这与 λ > 1 矛盾。根据引理1.1, Ω ¯ 中存在一个不动点。故问题(1.1) (1.2)在 X 中至少有一个解。

定理3.2 设(H1),(H2)以及下面的(H3)成立,则边值问题(1.1) (1.2)有唯一解 u X

(H3)存在非负函数 l 1 ( t ) , l 2 ( t ) L 1 ( J ) 使得

| f ( t , x 1 , y 1 ) f ( t , x 2 , y 2 ) | l 1 ( t ) | x 1 x 2 | + l 2 ( t ) | y 1 y 2 |

0 max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t < Γ ( α ) , 0 ξ i max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t < + ,

k = 2 P 0 max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t + 2 Q 0 ξ i max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t < 1 ,

成立。其中 P = 1 Γ ( α ) + 2 Γ ( α ) ( 1 i = 1 m α i ) + 1 , Q = 2 | i = 1 m α i | Γ ( α ) ( 1 i = 1 m α i )

证明:对 u 1 , u 2 X ,有

T u 1 T u 2 sup t J | T u 1 T u 2 | 1 + t α 1 + sup t J | D 0 + α 1 T u 1 D 0 + α 1 T u 2 | 1 Γ ( α ) 0 t | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s + 2 i = 1 m α i Γ ( α ) ( 1 i = 1 m α i ) 0 ξ i | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s + 2 Γ ( α ) ( 1 i = 1 m α i ) 0 | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s + 0 t | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s

P 0 | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s + Q 0 ξ i | f ( s , u 1 ( s ) , D 0 + α 1 u 1 ( s ) ) f ( s , u 2 ( s ) , D 0 + α 1 u 2 ( s ) ) | d s 2 P u 1 u 2 0 max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t

2 Q u 1 u 2 0 ξ i max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t { 2 P 0 max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t + 2 Q 0 ξ i max { ( 1 + t α 1 ) l 1 ( t ) , l 2 ( t ) } d t } u 1 u 2 = k u 1 u 2 .

因为 k < 1 ,所以 T 收敛。根据Banach不动点定理,可得 T 有唯一不动点。故边值问题(1.1) (1.2)有唯一解。

4. 应用

例4.1 考虑边值问题

D 0 + 5 2 u ( t ) = | u ( t ) D 0 + 3 2 u ( t ) | 4 e t 3 2 , t J : = ( 0 , ) ,

u ( 0 ) = D 0 + 1 2 u ( 0 ) = 0 , D 0 + 3 2 u ( ) = i = 1 m α i D 0 + 3 2 u ( ξ i ) ,

其中, α = 5 2 , f ( t , x , y ) = | u ( t ) D 0 + 3 2 u ( t ) | 4 e t 3 2 .

因为

| f ( t , x , y ) | 1 8 e t 3 2 | x | + 1 8 e t 3 2 | y | ,

通过简单计算可知,

0 ( ( 1 + s 3 2 ) 1 8 e t 3 2 + 1 8 e t 3 2 ) d s = 1 3 Γ ( 5 3 ) < Γ ( 2 n 1 2 ) = 3 4 Γ ( 1 2 ) = 3 4 π .

故定理3.1的条件成立。所以边值问题(1.1) (1.2)至少有一个解。

基金项目

安徽省自然科学基金项目支持(KJ2016A071);校质量工程项目支持(2016xjjyxm04)。

参考文献

[1] Zhao, X.K. and Ge, W.G. (2010) Unbounded Solutions for a Fractional Boundary Value Problems on the Infinite In-terval. Acta Applicandae Mathematicae, 109, 495-505.
https://doi.org/10.1007/s10440-008-9329-9
[2] El-Shahed, M. and Nieto, J.J. (2010) Nontrivial Solutions for a Nonlinear Multi-Point Boundary Value Problem of Fractional Order. Computers & Mathematics with Applications, 59, 3438-3443.
https://doi.org/10.1016/j.camwa.2010.03.031
[3] Guo, Y., Ji, Y. and Zhang, J. (2007) Three Positive Solutions for a Nonlinear nth-Order m-Point Boundary Value Problem. Nonlinear Analysis: Theory, Methods & Applications, 68, 3485-3492.
https://doi.org/10.1016/j.na.2007.03.041
[4] Zhang, X.M., Feng, M.Q. and Ge, W.G. (2009) Existence and Nonexistence of Positive Solutions for a Class of nth-Order Three-Point Boundary Value Problems in Banach Spaces. Nonlinear Analysis: Theory, Methods & Applications, 70, 584-597.
https://doi.org/10.1016/j.na.2007.12.028
[5] Du, Z.J., Liu, W.B. and Lin, X.J. (2007) Multiple Solutions to a Three-Point Boundary Value Problem for Higher-Order Ordinary Differential Equations. Journal of Mathematical Analysis and Applications, 335, 1207-1218.
https://doi.org/10.1016/j.jmaa.2007.02.014
[6] Wong, J.Y. (2008) Multiple Fixed-Sign Solutions for a System of Higher Order Three-Point Boundary-Value Problems with Deviating Arguments. Computers & Mathematics with Applications, 55, 516-534.
https://doi.org/10.1016/j.camwa.2007.04.023
[7] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon.
[8] Podlubny, I. (1999) Fractional Differential Equations. In: Mathematics in Science and Engineering, Vol. 198, Academic Press, New York, London, Toronto.
[9] Bai, Z.B. and Lu, H. (2005) Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation. Journal of Mathematical Analysis and Applications, 311, 495-505.
https://doi.org/10.1016/j.jmaa.2005.02.052
[10] Su, X.W. and Zhang, S.Q. (2011) Unbounded Solutions to a Boundary Value Problem of Fractional Order on the Half-Line. Computers & Mathematics with Applications, 61, 1079-1087.
https://doi.org/10.1016/j.camwa.2010.12.058