醋酸钴/TBHP催化氧化取代甲苯反应的研究
Study on Cobalt Acetate/TBHP Catalyzed Oxidation of Substituted Toluenes
DOI: 10.12677/SSC.2017.53003, PDF, HTML, XML,  被引量 下载: 1,960  浏览: 4,317  国家自然科学基金支持
作者: 裴明明, 吴江龙, 刘 平*, 刘 岩, 马晓伟:石河子大学化学化工学院/新疆兵团化工绿色过程重点实验室,新疆 石河子
关键词: 甲苯过氧化叔丁醇醋酸钴氧化Toluene TBHP Cobalt Acetate Oxidation
摘要: 苯甲酸及其衍生物作为一类重要的有机化工中间体,广泛用于生产医药、香料和食品防腐剂等生产中。本文通过在常压、无溶剂条件下,过氧化叔丁醇(TBHP)和醋酸钴结合催化氧化取代甲苯合成了一系列苯甲酸衍生物,确定了催化取代甲苯氧化合成苯甲酸类衍生物的最优反应条件为:1 mol% Co(OAc)2•4H2O,3当量的TBHP,取代甲苯5 mL,反应温度为100℃,反应时间为24 h。该方法具有选择性高,反应条件温和,催化剂廉价易得,分离简单,底物适用范围广等优点。
Abstract: Benzoic acid and its derivatives as an important class of organic chemical intermediates, is widely used in the production of pharmaceutical, perfume and food preservatives. In this paper, tert- butyl hydroperoxide (TBHP) and cobalt acetate combined catalytic oxidation of substituted toluene synthesized a series of benzoic acid derivative at atmospheric pressure in the absence of solvent, and identified the catalytic oxidation of toluene substituted to benzoic acid derivatives. The optimal reaction conditions were as follow: 1 mol% Co(OAc)2•4H2O, 3 equivalents of TBHP, 5 mL of toluene, reaction temperature 100˚C, reaction time 24 h. The method has many advantages of high selectivity, mild reaction conditions, cheap and readily available catalyst, simple separation, a wide suitable range of substrates.
文章引用:裴明明, 吴江龙, 刘平, 刘岩, 马晓伟. 醋酸钴/TBHP催化氧化取代甲苯反应的研究[J]. 合成化学研究, 2017, 5(3): 13-19. https://doi.org/10.12677/SSC.2017.53003

参考文献

[1] Yang, G., Zhang, Q., Miao, H., et al. (2005) Selective Organocatalytic Oxygenation of Hydrocarbons by Dioxygen Using Anthraquinones and N-Hydroxyphthalimide. Organicletters, 7, 263-266.
https://doi.org/10.1021/ol047749p
[2] Suresh, A.K., Sharma, M.M. and Sridhar, T. (2000) Engineering Aspects of Industrial Liquid-Phase Air Oxidation of Hydrocarbons. Industrial & Engineering Chemistry Research, 39, 3958-3997.
https://doi.org/10.1021/ie0002733
[3] Barati, B., Moghadam, M., Rahmati, A., et al. (2013) Direct Oxidation of Alcohols to Carboxylic Acids over Ruthenium Hydride Catalyst with Diphenyl Sulfoxide Oxidant. Inorganic Chemistry Communications, 29, 114-117.
https://doi.org/10.1016/j.inoche.2012.12.014
[4] Ahmad, J.U., Räisänen, M.T., Leskelä, M., et al. (2012) Copper Catalyzed Oxidation of Benzylic Alcohols in Water with H2O2. Applied Catalysis A: General, 411, 180-187.
https://doi.org/10.1016/j.apcata.2011.10.038
[5] Das, R. and Chakraborty, D. (2011) Cu (II) bromide Catalyzed Oxidation of Aldehydes and Alcohols. Applied Organometallic Chemistry, 25, 437-442.
https://doi.org/10.1002/aoc.1783
[6] Bäckvall, J.E. (2010) Modern Oxidation Methods. 2nd Edition, Wiley-VCH, Weinheim.
https://doi.org/10.1002/9783527632039
[7] Zhou, W., Huang, K., Cao, M., et al. (2015) Selective Oxidation of Toluene to Benzaldehyde in Liquid Phase over CoAl Oxides Prepared from Hydrotalcite-Like Precursors. Reaction Kinetics, Mechanisms and Catalysis, 115, 341-353.
https://doi.org/10.1007/s11144-015-0833-4
[8] Detoni, C., Carvalho, N.M.F., Aranda, D.A.G., et al. (2009) Cyclohexane and Toluene Oxidation Catalyzed by 1, 10-Phenantroline Cu (II) Complexes. Applied Catalysis A: General, 365, 281-286.
https://doi.org/10.1016/j.apcata.2009.06.027
[9] Seki, Y., Mizuno, N. and Misono, M. (2000) Catalytic Performance of 11-Molybdo-1-Vanadophosphoric Acid as a Catalyst Precursor and the Optimization of Reaction Conditions for the Oxidation of Methane with Hydrogen Peroxide. Applied Catalysis A: General, 194, 13-20.
https://doi.org/10.1016/S0926-860X(99)00348-8
[10] Sun, H., Liu, Z., Chen, S., et al. (2015) The Role of Lattice Oxygen on the Activity and Selectivity of the OMS-2 Catalyst for the Total Oxidation of Toluene. Chemical Engineering Journal, 270, 58-65.
https://doi.org/10.1016/j.cej.2015.02.017
[11] Karuehanon, W., Sirathanyarote, C. and Pattarawarapan, M. (2012) Poly (4-Vinylpyridine-CO-Divinylbenzene) Supported Iron (III) Catalyst for Selective Oxidation of Toluene to Benzoic Acid with H2O2.Tetrahedron, 68, 9423-9428.
https://doi.org/10.1016/j.tet.2012.09.004
[12] Wilson, K., Sheldon, R.A., Arends, I. and Hanefeld, U. (2007) R. A. Sheldon, I. Arends and U. Hanefeld. Green chemistry and catalysis. Wiley-VCH, 2007, 448 pp; ISBN 978-3-527-30715-9 (Hardcover), Book Review. Applied Organometallic Chemistry, 21, 1002.
https://doi.org/10.1002/aoc.1306
[13] Carrell, T.G., Cohen, S. and Dismukes, G.C. (2002) Oxidative Catalysis by Mn4O46+ Cubane Complexes. Journal of Molecular Catalysis A: Chemical, 187, 3-15.
https://doi.org/10.1016/S1381-1169(02)00139-5
[14] Deng, W., Luo, W.P., Tan, Z., et al. (2013) Remarkable Effect of Simple Aliphatic Alcohols on the Controlled Aerobic Oxidation of Toluene Catalyzed by (T(P-Cl)PP)MnF/NHPI. Journal of Molecular Catalysis A: Chemical, 372, 84-89.
https://doi.org/10.1016/j.molcata.2013.02.012
[15] Deng, W., Wan, Y., Jiang, H., et al. (2014) Solvent-Free Aerobic Oxidation of Toluene over Metalloporphyrin/NHPI/CTAB: Synergy and Mechanism. Catalysis Letters, 144, 333-339.
https://doi.org/10.1007/s10562-013-1104-5
[16] Fraga-Dubreuil, J., Garcia-Verdugo, E., Hamley, P.A., et al. (2007) Catalytic Selective Partial Oxidations Using O2 in Supercritical Water: The Continuous Synthesis of Carboxylic Acids. Green Chemistry, 9, 1238-1245.
https://doi.org/10.1039/b706730e
[17] Bose, S., Pariyar, A., Biswas, A.N., et al. (2010) Mild Oxidation of Hydrocarbons by Tert-Butyl Hydroperoxide Catalyzed by Electron Deficient Manganese (III) Corroles. Journal of Molecular Catalysis A: Chemical, 332, 1-6.
https://doi.org/10.1016/j.molcata.2010.09.001
[18] 张春雷, 顾承志, 刘平, 等. 非金属催化臭氧氧化苄醇制备芳基羧酸的研究[J]. 石河子大学学报, 自然科学版, 2015, 33(6): 761-765.