锂离子动力电池冷却技术研究进展
Research on Cooling Technology of Lithium-Ion Power Battery
DOI: 10.12677/SE.2016.66013, PDF, HTML, XML, 下载: 2,598  浏览: 6,431  科研立项经费支持
作者: 郭江荣, 吴 峰:宁波大学海运学院,浙江 宁波
关键词: 锂离子动力电池冷却相变Lithium-Ion Power Battery Cooling Phase Change
摘要: 锂离子动力电池在25℃~40℃内可高效安全运行,这需要配备高效的热管理系统保证锂离子动力电池组的运行安全。本文针对锂离子动力电池的散热特点,比较分析了风冷、液冷、相变材料冷却等锂离子动力电池冷却技术的优缺点及适用条件,最后对未来锂离子电池冷却技术进行了展望。
Abstract: Lithium-ion power battery can be safe and efficient in 25˚C to 40˚C, which needs to be equipped with an efficient thermal management system to ensure its safe operation. Aiming at the heat dissipation characteristics of lithium-ion power battery, a comparative analysis including the advantages, disadvantages and applicable conditions of cooling by air, liquid and phase change material of lithium-ion battery was proposed. At last, the cooling technology of lithium-ion battery in the future was prospected.
文章引用:郭江荣, 吴峰. 锂离子动力电池冷却技术研究进展[J]. 可持续能源, 2016, 6(6): 122-129. http://dx.doi.org/10.12677/SE.2016.66013

参考文献

[1] 楼英莺. 混合动力车用镍氢电池散热系统研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2007.
[2] 徐克成, 秋天, 陈军, 桂长清. 动力型蓄电池欧姆内阻测定[J]. 电池工业, 2011, 1(1): 3-5.
[3] Pesaran, A.A. (2001) Battery Thermal Management in EVs and HEVs: Issues and Solutions. Advanced Auto motive Battery Conference, Las Vegas, Nevada, 2001, 1-11.
[4] 齐晓霞, 王文, 邵力清. 混合动力电动车用电源热管理的技术现状[J]. 电源技术, 2005, 29(3): 178-181.
[5] 张剑波, 卢兰光, 李哲. 车用动力电池系统的关键技术与学科前沿[J]. 汽车安全与节能学报, 2012, 3(2): 87-104.
[6] 张国庆, 马莉, 张海燕. HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1): 1-4.
[7] 胡锐鸿. 电动汽车用锂离子电池热特性及散热装置的数值模拟[D]: [硕士学位论文]. 广州: 华南理工大学, 2014: 4-8.
[8] Lane, G.A. (1987) Solar Heat Storage: Latent Heat Materials. CRC Press, Florida.
[9] Regin, A.F, Solanki, S.C. and Saini, J.S. (2008) Heat Transfer Characteristics of Thermal Energy Storage System Using PCM Capsules: A Review. Renewable and Sustainable Energy Reviews, 12, 2438-2458.
https://doi.org/10.1016/j.rser.2007.06.009
[10] Agbossou, A., Zhang, Q., Sebald, G. and Guyomar, D. (2010) Solar Mi-cro-Energy Harvesting Based on Thermoelectric and Latent Heat Effects. Part I: Theoretical Analysis. Sensors and Actuators A: Physical, 163, 227-283.
https://doi.org/10.1016/j.sna.2010.06.026
[11] Sharma, A., Tyagi, V.V., Chen, C.R. and Buddhi, D. (2009) Review on Thermal Energy Storage with Phase Change Materials and Applications. Renewable and Sustainable Energy Reviews, 13, 318-345.
https://doi.org/10.1016/j.rser.2007.10.005
[12] Sadasuke, I. and Naokatsu, M. (1991) Heat Transfer Enhancement by Fin in Latent Heat Thermal Energy Storage Devices. ASME-JSME International Solar Energy Conference, 223-228.
[13] Bugaje, I.M. (1997) Enhancing the Thermal Response of Latent Heat Storage Systems. International Journal of Energy Research, 21, 759-766.
https://doi.org/10.1002/(SICI)1099-114X(199707)21:9<759::AID-ER254>3.0.CO;2-7
[14] Manoo, A. and Hensel, E. (1991) One-Dimensional Two-Phase Moving Boundary Problem, HTD, Phase Change Heat Transfer. ASME, 159, 97-102.