硅基片上光互连电路设计
Silicon Substrate Interconnection Circuit Design
DOI: 10.12677/OE.2016.62008, PDF, HTML, XML, 下载: 2,333  浏览: 5,695  国家科技经费支持
作者: 唐 雄, 范仁森, 马正飞, 徐开凯, 于 奇:电子科技大学微电子与固体电子学院,四川 成都
关键词: MOS管光发射器件硅基发光器件硅基光互连电路MOSFET Light Emitting Device Silicon Substrate Light Emitting Device Silicon Substrate Optical Interconnection Circuit
摘要: 根据摩尔定律,芯片的集成度不断提高,传统的片上互连技术由于受到电互连物理特性的限制,其传输延迟、带宽密度和功耗等关键性能指标很难有质地提升,成为制约片上互连性能进一步提升的瓶颈。相比之下,光互连信号传输具有损耗低、速度快、延迟低、带宽密度高的优势。因此,光互连技术在片上系统的应用中具有潜在优势。文章采用MOS管发光器件实现硅基光互连系统单片集成。由于硅光源在光互连中扮演着重要角色,所以本文对硅基发光做了重点研究,并对过去几年硅光源研究成果进行回顾。基于前人的研究成果,我们设计了MOS管发光器件,并对该器件的电学特性和光学特性进行了仿真和分析,基于这些结果,然后对硅基片上光互连进行初步的设计,有望在未来光互连中发挥重要作用。
Abstract: According to Moore’s Law, chip integration density continues to increase. Because of limited electrical interconnection physical characteristics, the transmission delay, bandwidth, density and power consumption of the traditional on-chip interconnect technology and other key performance indicators are difficult to be improved, which have become resistance and bottleneck to further enhance the SoC performance. Instead, optical interconnect signal transmission has low loss, high speed, low latency and high bandwidth density advantages. Therefore, optical interconnection technology has potential advantages in the application of SoC. This paper describes the implementation of the simple optical interconnection circuit under the standard CMOS process and the basic light principle light of light-emitting device. Silicon light source plays an important role in the interconnection; the paper made a focus on the silicon light-emitting, and reviewed the last few years’ research about silicon light source. Based on previous research, we design a MOS tube light-emitting device, and the electrical and optical characteristics of the device simulation and analysis. Based on these results, we design a preliminary silicon chip interconnect circuit which may play an important role in future optical interconnects.
文章引用:唐雄, 范仁森, 马正飞, 徐开凯, 于奇. 硅基片上光互连电路设计[J]. 光电子, 2016, 6(2): 47-53. http://dx.doi.org/10.12677/OE.2016.62008

参考文献

[1] Goodman, J.W., Leonberger, F.J., Kung, S.Y. and Athale, R.A. (1984) Optical Interconnections for VLSI Systems. Proceedings of the IEEE, 72, 850-866. http://dx.doi.org/10.1109/PROC.1984.12943
[2] 张兴杰, 张世林, 等. 标准CMOS工艺新型多晶硅PIN-LED的设计与实现[J]. 光电子: 激光, 2013(1): 6-10.
[3] 韩磊. 硅基发光器件及其构成的光互连系统研究[J]. 发光学报, 2012, 33(4): 444-448.
[4] Gautam, D.K., Khokle, W.S. and Garg, K.B. (1988) Effect of Absorption on Photon Emission from Reverse-Biased Silicon P-N Junctions. Solid-State Electron, 31, 1119-1121. http://dx.doi.org/10.1016/0038-1101(88)90415-7
[5] Wolff, P.A. (1960) Theory of Optical Radiation from Breakdown Avalanches in Germanium. Journal of Physical Chemistry of Solids, 16, 184-190. http://dx.doi.org/10.1016/0022-3697(60)90148-7
[6] Akil, N., Kerns, S.E., Kerns Jr., D.V., Hoffmann, A. and Charles, J.-P. (1999) A Multimechanism Model for Photon Generation by Silicon Junctions in Avalanche Breakdown. IEEE Transactions on Electron Devices, 46, 1022-1028. http://dx.doi.org/10.1109/16.760412
[7] Snyman, L.W., du Plessis, M., Seevinck, E. and Aharoni, H. (1999) An Efficient Low Voltage, High Frequency Silicon CMOS Light Emitting Device and Electro-Optical Interface. IEEE Electron Device Letters, 20, 614-617. http://dx.doi.org/10.1109/55.806102
[8] Snyman, L.W., et al. (2000) Optical Sources, Integrated Optical Detectors and Optical Waveguides in Standard Silicon CMOS Integrated Circuitry. Symposium on Integrated Optoelectronics, 3953, 20-36.
[9] Plessis, M.D., Aharoni, H. and Snyman, L.W. (2005) Two- and Multi-Terminal CMOS/BiCMOS Si LED’s. Optical Materials, 27, 1059-1063. http://dx.doi.org/10.1016/j.optmat.2004.08.063
[10] Xu, K.K. and Huang, B.J. (2015) Silicon Light-Emitting Device in Standard CMOS Technology. International Photonics & Optoelectronics Meeting. http://dx.doi.org/10.1364/oedi.2015.ot1c.3
[11] Huang, B.J., Zhang, X., Wang, W., Dong, Z., Guan, N., Zhang, Z. and Chen, H. (2011) CMOS Monolithic Optoelectronic Integrated Circuit for On-Chip Optical Interconnection. Optics Communications, 284, 3924-3927. http://dx.doi.org/10.1016/j.optcom.2011.04.028