基于自适应动态逆的四旋翼机器人控制器设计
Adaptive Dynamic Inversion Controller for Quad Rotor Aerial Robot
DOI: 10.12677/DSC.2014.31001, PDF, HTML,  被引量 下载: 3,482  浏览: 12,065 
作者: 章志祥, 王立峰, 赫丛奎:北方工业大学现场总线技术及自动化实验室,北京
关键词: 四旋翼机器人自适应动态逆控制器鲁棒性MATLAB仿真Quad Rotor; Adaptive Dynamic Inversion Controller; Robustness; MATLAB Simulation
摘要: 本文针对“X”型四旋翼空中机器人的轨迹跟踪问题,设计了一种自适应动态逆控制器。为了加强控制系统的鲁棒性,提出一个自适应动态矢量用于补偿模型逆误差,使系统达到Lyapunov渐近稳定。基于四旋翼机器人复杂的非线性动态模型,自适应动态逆控制器能在线估计并补偿四旋翼机器人的模型误差,使系统达到渐近稳定和轨迹跟踪的目的。MATLAB仿真实验表明该控制方案能满足系统稳定和轨迹跟踪的目的
Abstract: This paper presents an adaptive dynamic inversion controller for trajectory tracking of quad rotor aerial robot with X type configuration. In order to enhance the robustness of dynamic inversion controller, an adaptive dynamic variable vector is used to compensate the model inversion error and achieve the asymptotic stability. On the base of a nonlinear dynamic model of the quad rotor, adaptive dynamic inversion nonlinear controller is synthesized for the purpose of stabilization and trajectory tracking. The proposed control method can compensate the deviation of model inaccuracy. It behaves perfectly at the reference altitude and trajectory track in MATLAB simulation.
文章引用:章志祥, 王立峰, 赫丛奎. 基于自适应动态逆的四旋翼机器人控制器设计[J]. 动力系统与控制, 2014, 3(1): 1-7. http://dx.doi.org/10.12677/DSC.2014.31001

参考文献

[1] Lim H., Park J., Lee D. and Kim, H.J. (2012) Build Your Own Quadrotor. IEEE Robotics & Automation Magazine, 19, 33-45.
[2] 苏身榜, 张有安 (2003) 动态逆方法在空空导弹控制系统设计中的应用. 海军航空工程学院学报, 6, 602-604.
[3] Kim M., Kim Y. and Jun, J. (2012) Adaptive Sliding Mode Control Using Slack Variables for Affine Underactuated Systems. 51st IEEE Conference on Decision and Control, Maui, 10-13 December 2012, 10-13.
[4] Bouadi H., Cunha S.S., Drouin A. and Mora-Camino, F (2011) Adaptive Sliding Mode Control for Quadrotor Attitude Stabilization and Altitude Tracking. 12th IEEE international Symposium on Computational Intelligence and Informatics, Budapest, 21-22 November 2011, 449-455.
[5] Choi J.Y. and Chwa, D. (2006) Adaptive Control Based on a Parametric Affine Model for Tail-Controlled Missiles. IEEE Transactions on Aero-space and Electronic Systems, 42, 659-669.
[6] Y.-J. Huang, Kuo T.-C. and Chang, S.-H. (2008) Adaptive Sliding-Mode Control for Nonlinear Systems with Uncertain Parameters. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics, 38, 534-539.
[7] Derafa, A.B. and Fridman, L. (2012) Super Twisting Control Algorithm for the Attitude Tracking of Four Rotors UAV. Journal of the Franklin Institude, 349, 685-699.
[8] Huang M., Xian B., Diao C., Yang, K. and Feng, F. (2010) Adaptive Tracking Control of Underactuated Quadrotor Unmanned Aerial Vehicles via Backstepping. Proceedings of American Control Conference 2010, Baltimore, 30 June-2 July 2010, 2076-2081.
[9] Lee D., Burg T.C., Dawson D.M., Shu, D. and Xian, B. (2009) Robust Tracking Control of an Underactuated Quadrotor Aerial-Robot Based on a Parametric Uncertain Model. SMC 2009, IEEE International Conference on Systems, Man and Cybernetics, 11-14 October 2009, 3187-3192.
[10] Bialy B., Klotz J., Brink K. and Dixon, W.E. (2013) Lyapunov-Based Robust Adaptive Control of a Quadrotor UAV in the Presence of Modeling Uncertainties. American Control Conference (ACC), Washington DC, 17-19 June 2013, 13-18.
[11] Wang, L.F., He, C.K. and Zhu, P. (2014) Adaptive Sliding Mode Control for Quadrotor Aerial Robot with Ι Type Configuration. International Journal of Automation and Control Engineering (IJACE), 3, 20-26.
[12] Coza, C. and Macnab, C.J.B. (2006) A New Robust Adaptive-Fuzzy Control Method Applied to Quadrotor Helicopter Stabilization. Fuzzy Information Processing Society, NAFIPS 2006, Annual Meeting of the North American, Montreal, 3-6 June 2006, 454-458.
[13] Barghandan, S. and Badamchizadeh, M.A. (2013) A New Approach for Designing Robust Adaptive Fuzzy Sliding Mode Controller. 2013 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, 14-16 May 2013, 1-6.
[14] Wang, L.F., He, Y.C., Zhang, Z.X. and He, C.K. (2013) Trajectory Tracking of Quadrotor Aerial Robot Using Improved Dynamic Inversion Method. Intelligent Control and Automation, 4, 343-348.
[15] 杨庆华, 宋召青 (2009) 四旋翼飞行器的建模控制与仿真. 海军工程学院学报, 5, 499-502.