引射技术及其在天然气处理中的应用
Ejector Technology and Its Application in Dispose Processing of Natural Gas
DOI: 10.12677/HJCET.2013.31007, PDF, HTML, 下载: 3,961  浏览: 11,852 
作者: 张明益, 李静, 邹应勇, 刘武, 刘培启*:中国石油天然气股份有限公司塔里木油田分公司,库尔勒;胡大鹏:大连理工大学化工机械学院,大连
关键词: 油气集输引射技术压力能利用轻烃回收数值模拟工艺模拟Oil-Gas Gathering and Transportation; Ejector Technology; The Application of Pressure Energy; Light Hydrocarbon Recovery; Numerical Simulation; Process Simulation
摘要: 采用理论分析和数值计算相结合,进行了引射装置设计,并以牙哈气田为例,探讨了引射装置用于天然气田轻烃回收工艺时存在的优势,得出主要结果和结论如下:1) 本文建立的引射装置数值计算模型能够得到装置内部流场信息,可用于装置结构的优化;2) 喷嘴可调引射器结构,可提高装置工况适用性,可实现不同流量的调节;3) 引射技术能够利用高压天然气自身压力能引射低压流体,大幅度减小凝析气田轻烃回收装置的能耗,为天然气集输处理提供一个新途径。
Abstract: The method of theoretical analysis combining with numerical calculation in this paper has been adopted to design ejector device, and the YaHa oil-gas field has been cited as an example to discuss the advantages of ejector device used in the process of light hydrocarbon recovery from condensate field. The main results and conclusions are as follows: 1) The established numerical model of ejector machine can get the information of internal flow inside the device, so it could be used in the optimization of device structure; 2) The adjustable nozzle of ejector structure can improve the appli- cability of operational condition and realize regulation for different flow rate; 3) The ejector technology can utilize the high pressure gas with high pressure energy itself to inject the low pressure fluid and greatly reduce the energy consump- tion of light hydrocarbon recovery, providing a new way for natural gas gathering and transferring process.
文章引用:张明益, 李静, 邹应勇, 刘武, 刘培启, 胡大鹏. 引射技术及其在天然气处理中的应用[J]. 化学工程与技术, 2013, 3(1): 38-41. http://dx.doi.org/10.12677/HJCET.2013.31007

参考文献

[1] 赵静野, 孙厚钧, 高军. 引射器基本工作原理及其应用[J]. 北京建筑工程学院学报, 2000, 16(4): 12-15.
[2] 索科洛夫, 津格尔, 黄秋云(译). 喷射器[M]. 北京: 科学出版社, 1977.
[3] 胡述明. 喷射泵在低压天然气采输中的应用[J]. 石油矿厂机械, 2011, 40(8): 62-64.
[4] 杨德伟, 林日亿, 王弥康等. 利用喷射器技术输送低压气层天然气[J]. 油气田地面工程, 2005, 24(4): 10-12.
[5] 张书平, 刘双全, 陈德见. 天然气喷射引流技术在靖边气田的应用试验[J]. 新疆石油天然气, 2008, 8: 113-119.
[6] 王晓荣, 王惠, 宋汉华等. 实现低压气井增压开采的喷射引流技术[J]. 石油化工应用, 2009, 28(6): 25-27.
[7] T. H. Shih, W. W. Liou, A. Shabbir, Z. G. Yang and J. Zhu. A new k-ε eddy viscosity model for high Rey-nolds number turbulent flows. Compute Fluids, 1995, 24(3): 227-238.
[8] J. A. Fernández, J. C. Elicer-Cortés, A. Valencia, M. Pavageau and S. Gupta. Comparison of low-cost two-equation turbulence models for prediction flow dynamics in twin-jets devices. Inter- national Communications in Heat and Mass Transfer, 2007, 34(5): 570-578.
[9] B. Van Leer. Up-wind-difference methods for aerodynamics pro- blems governed by the Euler equations of gas dynamics. Lectures in Applied Mathematics, 1985, 22: 327-336.
[10] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001: 353.
[11] 王天祥等. 高压凝析气藏试井技术研究–以塔里木盆地牙哈凝析气田为例[J]. 天然气地球科学, 2006, 17(3): 286-291.
[12] 张红燕等. 凝析气田地面集气工艺技术[J]. 石油规划设计, 2007, 18(2): 25-27.
[13] 郭野愚. 浅谈牙哈凝析气田集气工艺技术[J]. 石油规划设计, 1999, 10(3): 24-26.
[14] 裴红等. 牙哈凝析气田地面工艺技术特点[J]. 石油规划设计, 2003, 14(5): 10-12.