电厂烟气中二氧化碳的捕获
The Capture Of Carbon Dioxide From The Power Plant Flue Gas
DOI: 10.12677/hjcet.2011.11002, PDF, HTML,  被引量 下载: 4,795  浏览: 17,012  科研立项经费支持
作者: 李芬芬, 张文郁:山东轻工业学院,济南;杨永红, 杨成, 吴晋沪:中国科学院青岛生物能源与过程研究所中科院生物燃料重点实验室,青岛
关键词: 二氧化碳燃煤电厂捕获碳减排
Carbon Dioxide; Coal-Fired Power Plant; Capture; Carbon Emissions Reduction
摘要: 二氧化碳的捕获分离是其固定和利用的前提,本文首先针对电厂烟气概括比较了目前二氧化碳的捕获方法,进一步结合燃煤电厂自身工艺条件和世界先进的洁净煤技术发展,探讨我国燃煤电厂实现二氧化碳减排的可能途径。
Abstract: The capture & separation of carbon dioxide is the premise of its storage and utilization. The progress and perspective methods for CO2 capture according to current power plant flue gas were summarized and compared in this paper. Moreover, the process of the coal-fired power plant and the development of the advanced clean coal technology were briefly reviewed. Thus, we pointed out the promising way for China's coal-fired Power plants to reduce carbon dioxide emissions.
文章引用:李芬芬, 杨永红, 杨成, 张文郁, 吴晋沪. 电厂烟气中二氧化碳的捕获[J]. 化学工程与技术, 2011, 1(1): 4-10. http://dx.doi.org/10.12677/hjcet.2011.11002

参考文献

[1] A. Adegbululgbe, J. Fenhann, I. Konstantinaviciute, et al. En-ergy Supply, Intergovernmental Panel on Climate Change 2007[URL]. http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf, 2007.
[2] C. S. Song. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemi-cal processing. Catalysis Today, 2006, 115(1-4): 2-32.
[3] R. Carapellucci, A. Milazzo. Membrane systems for CO2 capture and their integration with gas turbine plants. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 2003, 217(A5): 505-517.
[4] C. Stewart and M. A. Hessami. A study of methods of carbon dioxide capture and se-questration - the sustainability of a photosynthetic bioreactor ap-proach. Energy Conversion and Management, 2005, 46(3): 403-420.
[5] 新华网. 中国应对气候变化国家方案[URL]. http://news.xinhuanet.com/politics/2007-06/04/content_6196300.htm, 2007-06-04.
[6] 秦大河, 陈宜瑜. 中国气候与环境演变[M]. 北京: 科学出版社, 2005.
[7] 国家气候变化对策协调小组办公室,中国21世纪议程管理中心. 全球气候变化——人类面临的挑战. 北京: 商务出版社, 2004.
[8] 郑京. 温室效应对环境的影响[J]. 山东环境, 2003(01).
[9] 张川如, 虞绍永. 二氧化碳气井测试与评价方法[M]. 北京: 石油工业出版社, 1999.
[10] 陈五平主编, 《无机化工工艺学》上册(第三版). 北京: 化学工业出版社, 2002:141-179
[11] 彭淑婧, 任爱玲. 烟气中二氧化碳资源化技术及应用前景[J].河南化工, 2006, 29(8): 30-32.
[12] A. G. Darvid. New solvent for CO2 removal. Chemical Engineering, 1999, 106(2): 25-26.
[13] S. Lee, T. P. Filburn, M. Gray, et al. Screening test of solid amine sorbents for CO2 capture. Ind. Eng. Chem. Res, 2008, 47(19): 7419-7423.
[14] M. L. Gray , Y. Soong, K. J. Champagne, et al. CO2 capture by amine-enriched fly ash carbon sorbents. Separa-tion and Purification Technology, 35 (2004): 31-36.
[15] N. Hiyoshi, K. Yogo, and T. Yashima. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Micro-porous Mesoporous Mater, 2005, 84(1-3): 357-365.
[16] M. L. Gray, J. S. Hoffman, D. C. Hreha, et al. Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy Fuels, 2009, 23 (10): 4840-4844.
[17] W. Gao, D. Butler, and D. L. Tomasko. High-Pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms. Langmuir, 2004, 20(19): 8083-8089.
[18] R. V. Siriwardane, M. S. Shen, E. P. Fisher. Adsorption of CO2 on zeolites at moderate temperatures. A. EnergyFuels. 2005, 19(3): 1153-1159.
[19] R. V. Siriwar-dane, M. S. Shen, E. P. Fisher, et al. Adsorption of CO2 on mo-lecular sieves and activated carbon. Energy Fuels, 2001, 15(2): 279-284.
[20] J. Przepiórski, M. Skrodzewicz and A. W. Morawski. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci, 2004, 225(1-4): 235-242.
[21] E. D. Bates, R. D. Mayton, I. Ntai, et al. CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc, 2002, 124(6): 926-927.
[22] X. C. Xu, C. S. Song, B. G. Miller, et al. Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “mo-lecular basket”adsorbent. Fuel Processing Technology, 2005, 86(14-15): 1457- 1472.
[23] J. Peng, Y. Deng. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New Journal of Chemistry, 2001, 25(4): 639-641.
[24] K R. Seddon. Ionic liquids for clean technology. Chem. Biotechnol, 1997, 4(68): 351-356.
[25] J. Sun, S. Fujita, F. Zhao, et al. Syn-thesis of styrene carbonate from styrene oxide and carbon diox-ide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chemistry, 2004, 6(12): 613-616.
[26] R. S. Franchi, P. J. E. Harlick, and A. Sayari. Applications of pore-expanded mesoporous silica. 2. development of a high-capacity, water-tolerant adsorbent for CO2. Ind. Eng. Chem. Res, 2005, 44(21): 8007-8013.
[27] P. J. E. Harlick, A. Sayari. Applications of pore-expanded mesoporous silicas. 3. triamine silane grafting for enhanced CO2 adsorption. Ind. Eng. Chem. Res, 2006, 45(9): 3248-3255.
[28] A. C. C. Chang, S. S. C. Chuang, M. Gray, et al. In-Situ infrared study of CO2 adsorption on SBA-15 grafted with γ- (Aminopropyl)triethoxysilane. En-ergy Fuels, 2003, 17(2): 468- 473.
[29] R. A. Khatri, S. S. C. Chuang, Y. Soong, et al. Carbon dioxide capture by dia-mine-grafted SBA-15: a combined fourier transform infrared and mass spectrometry study. Ind. Eng. Chem. Res, 2005, 44(10): 3702-3708.
[30] M. B. Yue, L. B. Sun, Y. Cao, et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous and Mesoporous Materials, 2008, 114(1-3): 74-81.
[31] M. Mercedes Maroto-Valer, Z. Tang, and Y. Z. Zhang. CO2 capture by activated and impregnated anthracites. Fuel Processing Technology, 2005, 86(14-15): 1487-1502.
[32] L. A. Blanchard, D. Hancu, E. J. Beckman, et al. Green processing using ionic liquids and CO2. Nature, 1999, 399(6731): 28-28.
[33] H. J. Davis. Task-specific ionic liquids. Chemistry Letters, 2004, 33(9): 1072-1077
[34] H. Kawanami, A. Sasaki, K. Matsui, et al. A rapid and effective synthesis of propylene carbonate using a supercritical CO 2-ionic liquid sys-tem. Chemical Communications, 2003, 2003(7): 896-897.
[35] J. D. Figueroa, T. Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R. D. Advancesn in CO2 capture technology - The US Department of Energy's Carbon Sequestration Program. In-ternational Journal of Greenhouse Gas Control, 2008, 2(1): 9-20.
[36] 王慧. 无机复合固体碱的制备和稳定化及其在酷交换法合成碳酸二甲酷等绿色催化过程中的应用[D]. 太原: 中国科学院山西煤炭化学研究所, 2006.
[37] 刘水刚, 张学兰, 李军平等. 高稳定性介孔CaO-ZrO2固体碱的结构及碱性研究[J]. 石油化工, 2008, 37(3): 226-232.
[38] D. Demontigny, P. Tontiwachwuthikul, and A. Chakma. Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption. Journal of Membrane Science, 2006, 277(1-2): 99-107.
[39] F. S. Pereira, E. R. DeAzevedo, E. F. da Silva, et al. Study of the carbon dioxide chemical fixation-activation by gua-nidines. Tetrahedron, 2008, 64(43): 10097- 10106.
[40] R. Sheikholeslami. Fouling mitigation in membrane processes. De-salination, 1999, 123(1): 45-53.
[41] 陈文, 胡松, 向军等. 功能型离子液体吸收电厂烟气CO2的研究进展. 化工时刊[J]. 2010, 24(2): 52-60.
[42] 张锁江, 吕兴梅等, 离子液体从基础研究到工业应用[M], 北京: 科学出版社, 2006: 416-425.
[43] S. J. Zhang, Y. H. Chen, F. W. Li, et al. Fixation and con-version of CO2 using ionic liquids, Catalysis Today, 2006, 115(1-4): 61-69.
[44] S. J. Zhang, X. L. Yuan, Y. H. Chen, et al. Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluoro-phosphate and 1,1,3,3- tetramethylguanidium lactate at elevated pressures. Journal of Chemical and Engineering Data, 2005, 50(5): 1582-1585.
[45] H. Herzog. CO2 capture, reuse, and storage technologies for mitigating global climate change-A white paper, Final report, DOE Order No.DE-AF22-96PC01257, Massachusetts: Massachusetts Institute of Technology, Energy Libratory, 1997.
[46] H. Q. Yang, Z. H. Xu, M. H. Fan, et al. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences-China, 2008, 20(1): 14-27.
[47] 黄斌, 刘练波, 许世森. 二氧化碳的捕获和封存技术进展[J]. 中国电力, 2007, 40(3): 14-15.
[48] 魏晓丹. 国内外二氧化碳的利用现状及进展[J]. 低温与特气, 1997(4): 1-7.