|
[1]
|
Bone, R.C., Balk, R.A., Cerra, F.B., et al. (1992) Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest, 101, 1644-1655. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rhodes, A., Evans, L.E., Alhazzani, W., et al. (2017) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Medicine, 43, 304-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rudd, K.E., Johnson, S.C., Agesa, K.M., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. [Google Scholar] [CrossRef]
|
|
[4]
|
Kumar, A., Hammond, N., Abbenbroek, B., et al. (2023) Sepsis-Coded Hospitalisations and Associated Costs in Australia: A Retrospective Analysis. BMC Health Services Research, 23, Article No. 1319. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dettmer, M., Holthaus, C.V. and Fuller, B.M. (2015) The Impact of Serial Lactate Monitoring on Emergency Department Resuscitation Interventions and Clinical Outcomes in Severe Sepsis and Septic Shock: An Observational Cohort Study. Shock, 43, 55-61. [Google Scholar] [CrossRef]
|
|
[6]
|
Pizzolato, E., Ulla, M., Galluzzo, C., et al. (2014) Role of Presepsin for the Evaluation of Sepsis in the Emergency Department. Clinical Chemistry and Laboratory Medicine, 52, 1395-1400. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tan, M., Lu, Y., Jiang, H., et al. (2019) The Diagnostic Accuracy of Procalcitonin and C-Reactive Protein for Sepsis: A Systematic Review and Meta-Analysis. Journal of Cellular Biochemistry, 120, 5852-5859. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhang, W., Wang, W., Hou, W., et al. (2022) The Diagnostic Utility of IL-10, IL-17, and PCT in Patients with Sepsis Infection. Frontiers in Public Health, 10, Article 923457. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Nichol, A.D., Egi, M., Pettila, V., et al. (2010) Relative Hyperlactatemia and Hospital Mortality in Critically Ill Patients: A Retrospective Multi-Centre Study. Critical Care, 14, Article No. R25. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wardi, G., Brice, J., Correia, M., et al. (2020) Demystifying Lactate in the Emergency Department. Annals of Emergency Medicine, 75, 287-298. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Innocenti, F., Meo, F., Giacomelli, I., et al. (2019) Prognostic Value of Serial Lactate Levels in Septic Patients with and without Shock. Internal and Emergency Medicine, 14, 1321-1330. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gong, C., Jiang, Y., Tang, Y., et al. (2022) Elevated Serum Lactic Acid Level Is an Independent Risk Factor for the Incidence and Mortality of Sepsis-Associated Acute Kidney Injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 34, 714-720.
|
|
[13]
|
Guan, J., Wang, Z., Liu, X., et al. (2020) IL-6 and IL-10 Closely Correlate with Bacterial Bloodstream Infection. Iranian Journal of Immunology, 17, 185-203.
|
|
[14]
|
Huang, Z., Fu, Z., Huang, W., et al. (2020) Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Sepsis: A Meta-Analysis. The American Journal of Emergency Medicine, 38, 641-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zheng, R., Shi, Y.Y., Pan, J.Y., et al. (2023) Decrease in the Platelet-to-Lymphocyte Ratio in Days after Admission for Sepsis Correlates with in-Hospital Mortality. Shock, 59, 553-559. [Google Scholar] [CrossRef]
|
|
[16]
|
Li, F., Ye, Z., Zhu, J., et al. (2023) Early Lactate/Albumin and Procalcitonin/Albumin Ratios as Predictors of 28-Day Mortality in ICU-Admitted Sepsis Patients: A Retrospective Cohort Study. Medical Science Monitor, 29, e940654. [Google Scholar] [CrossRef]
|
|
[17]
|
Liu, Y., Gao, Y., Liang, B., et al. (2023) The Prognostic Value of C-Reactive Protein to Albumin Ratio in Patients with Sepsis: A Systematic Review and Meta-Analysis. The Aging Male, 26, Article 2261540. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chen, Q., Zhang, L., Ge, S., et al. (2019) Prognosis Predictive Value of the Oxford Acute Severity of Illness Score for Sepsis: A Retrospective Cohort Study. PeerJ, 7, e7083. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, E.Y., Chen, M.K., Hsieh, M.Y., et al. (2022) Relationship between Preoperative Nutritional Status and Clinical Outcomes in Patients with Head and Neck Cancer. Nutrients, 14, Article 5331. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Nogueiro, J., Santos-Sousa, H., Pereira, A., et al. (2022) The Impact of the Prognostic Nutritional Index (PNI) in Gastric Cancer. Langenbeck’s Archives of Surgery, 407, 2703-2714. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wu, H., Zhou, C., Kong, W., et al. (2022) Prognostic Nutrition Index Is Associated with the All-Cause Mortality in Sepsis Patients: A Retrospective Cohort Study. Journal of Clinical Laboratory Analysis, 36, e24297. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, T., Qi, M., Dong, G., et al. (2021) Clinical Value of Prognostic Nutritional Index in Prediction of the Presence and Severity of Neonatal Sepsis. Journal of Inflammation Research, 14, 7181-7190. [Google Scholar] [CrossRef]
|
|
[23]
|
Guan, G., Lee, C.M.Y., Begg, S., et al. (2022) The Use of Early Warning System Scores in Prehospital and Emergency Department Settings to Predict Clinical Deterioration: A Systematic Review and Meta-Analysis. PLOS ONE, 17, e0265559. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lan, L., Zhou, M., Chen, X., et al. (2023) Prognostic Accuracy of SOFA, MEWS, and SIRS Criteria in Predicting the Mortality Rate of Patients with Sepsis: A Meta-Analysis. Nursing in Critical Care. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, Z., Meng, Z., Li, Y., et al. (2019) Prognostic Accuracy of the Serum Lactate Level, the SOFA Score and the qSOFA Score for Mortality among Adults with Sepsis. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 27, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Funk, D., Sebat, F. and Kumar, A. (2009) A Systems Approach to the Early Recognition and Rapid Administration of Best Practice Therapy in Sepsis and Septic Shock. Current Opinion in Critical Care, 15, 301-307. [Google Scholar] [CrossRef]
|
|
[28]
|
Usman, O.A., Usman, A.A. and Ward, M.A. (2019) Comparison of SIRS, qSOFA, and NEWS for the Early Identification of Sepsis in the Emergency Department. The American Journal of Emergency Medicine, 37, 1490-1497. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Qiu, X., Lei, Y.P. and Zhou, R.X. (2023) Sirs, Sofa, qSOFA, and NEWS in the Diagnosis of Sepsis and Prediction of Adverse Outcomes: A Systematic Review and Meta-Analysis. Expert Review of Anti-Infective Therapy, 21, 891-900. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Seymour, C.W., Liu, V.X., Iwashyna, T.J., et al. (2016) Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 762-774. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Evans, L., Rhodes, A., Alhazzani, W., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Knaus, W.A., Draper, E.A., Wagner, D.P., et al. (1985) APACHE II: A Severity of Disease Classification System. Critical Care Medicine, 13, 818-829. [Google Scholar] [CrossRef]
|
|
[33]
|
Nguyen, H.B., Van Ginkel, C., Batech, M., et al. (2012) Comparison of Predisposition, Insult/Infection, Response, and Organ Dysfunction, Acute Physiology and Chronic Health Evaluation II, and Mortality in Emergency Department Sepsis in Patients Meeting Criteria for Early Goal-Directed Therapy and the Severe Sepsis Resuscitation Bundle. Journal of Critical Care, 27, 362-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhou, S., Lu, Z., Liu, Y., et al. (2024) Interpretable Machine Learning Model for Early Prediction of 28-Day Mortality in ICU Patients with Sepsis-Induced Coagulopathy: Development and Validation. European Journal of Medical Research, 29, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Liu, Y., Bu, L., Chao, Y., et al. (2022) Combined Serum NGAL and Fetuin A to Predict 28-Day Mortality in Patients with Sepsis and Risk Prediction Model Construction. Cellular and Molecular Biology, 68, 47-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yang, L., Yang, J., Zhang, X., et al. (2024) Predictive Value of Soluble CD40L Combined with APACHE II Score in Elderly Patients with Sepsis in the Emergency Department. BMC Anesthesiology, 24, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Deo, R.C. (2015) Machine Learning in Medicine. Circulation, 132, 1920-1930. [Google Scholar] [CrossRef]
|
|
[38]
|
Haug, C.J. and Drazen, J.M. (2023) Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. The New England Journal of Medicine, 388, 1201-1208. [Google Scholar] [CrossRef]
|
|
[39]
|
Thomas-Rueddel, D.O., Poidinger, B., Weiss, M., et al. (2015) Hyperlactatemia Is an Independent Predictor of Mortality and Denotes Distinct Subtypes of Severe Sepsis and Septic Shock. Journal of Critical Care, 30, 439.E1-E6. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, L., Huang, T., Xu, F., et al. (2022) Prediction of Prognosis in Elderly Patients with Sepsis Based on Machine Learning (Random Survival Forest). BMC Emergency Medicine, 22, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Baniasadi, A., Rezaeirad, S., Zare, H., et al. (2021) Two-Step Imputation and AdaBoost-Based Classification for Early Prediction of Sepsis on Imbalanced Clinical Data. Critical Care Medicine, 49, e91-e97. [Google Scholar] [CrossRef]
|
|
[42]
|
Eskandari, M.A., Moridani, M.K. and Mohammadi, S. (2023) Detection of Sepsis Using Biomarkers Based on Machine Learning. Bratislavské lekárske listy, 124, 239-250. [Google Scholar] [CrossRef]
|
|
[43]
|
Delahanty, R.J., Alvarez, J., Flynn, L.M., et al. (2019) Development and Evaluation of a Machine Learning Model for the Early Identification of Patients at Risk for Sepsis. Annals of Emergency Medicine, 73, 334-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chen, Q., Li, R., Lin, C., et al. (2022) Transferability and Interpretability of the Sepsis Prediction Models in the Intensive Care Unit. BMC Medical Informatics and Decision Making, 22, Article No. 343. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Hou, N., Li, M., He, L., et al. (2020) Predicting 30-Days Mortality for MIMIC-III Patients with Sepsis-3: A Machine Learning Approach Using XGboost. Journal of Translational Medicine, 18, Article No. 462. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
García-Gallo, J.E., Fonseca-Ruiz, N.J., Celi, L.A., et al. (2020) A Machine Learning-Based Model for 1-Year Mortality Prediction in Patients Admitted to an Intensive Care Unit with a Diagnosis of Sepsis. Medicina Intensiva, 44, 160-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bouza, C., Lopez-Cuadrado, T. and Amate-Blanco, J.M. (2016) Use of Explicit ICD9-CM Codes to Identify Adult Severe Sepsis: Impacts on Epidemiological Estimates. Critical Care, 20, Article No. 313. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhang, G., Shao, F., Yuan, W., et al. (2024) Predicting Sepsis in-Hospital Mortality with Machine Learning: A Multi-Center Study Using Clinical and Inflammatory Biomarkers. European Journal of Medical Research, 29, Article No. 156. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wang, Z., Zhang, L., Chao, Y., et al. (2023) Development of a Machine Learning Model for Predicting 28-Day Mortality of Septic Patients with Atrial Fibrillation. Shock, 59, 400-408. [Google Scholar] [CrossRef]
|