Bimekizumab治疗斑块型银屑病的研究进展
Research Progress of the Treatment of Plaque Psoriasis with Bimekizumab
DOI: 10.12677/acm.2024.1451697, PDF, HTML, XML, 下载: 23  浏览: 60 
作者: 张 昕, 常 伟, 谭 献, 郭佳敏, 陈 昭:华北理工大学附属工人医院,河北 唐山
关键词: 银屑病BimekizumabIL-17A/IL-17F双重抑制Psoriasis Bimekizumab IL-17A/IL-17F Dual Inhibition
摘要: 银屑病是一种慢性、难治性、炎症性皮肤病,发病率高,对银屑病患者及社会造成沉重的负担。随着医学研究的不断进步,针对特定作用机制的生物制剂以其治疗效果明显、不良反应较少而广泛应用于临床。研究显示,Bimekizumab可双重抑制IL-17A/IL-17F,被美国食品和药物管理局(FDA)批准用于中重度银屑病的成年患者,并且是第一个且目前为止唯一批准的用于选择性抑制两种主要细胞因子的药物,其治疗效果相较于单一抑制IL-17A更显著。因此,本文综述了Bimekizumab的作用机制、在银屑病中的研究进展,为银屑病的发病与治疗提供新思路。
Abstract: Psoriasis is a chronic, refractory, inflammatory skin disease, with a high incidence of incidence rate, which causes a heavy burden on patients with psoriasis and society. With the continuous progress of medical research, biological agents targeting specific mechanisms of action are widely used in clinical practice due to their significant therapeutic effects and fewer adverse reactions. Research has shown that Bimekizumab can double inhibit IL-17A/IL-17F, and is approved by the US Food and Drug Administration (FDA) for use in adult patients with moderate to severe psoriasis. It is the first and only approved to selectively inhibit two major cytokines, and its therapeutic effect is more significant than single inhibition of IL-17A. Therefore, this article reviews the mechanism of action and research progress of Bimekizumab in psoriasis, providing new ideas for the pathogenesis and treatment of psoriasis.
文章引用:张昕, 常伟, 谭献, 郭佳敏, 陈昭. Bimekizumab治疗斑块型银屑病的研究进展[J]. 临床医学进展, 2024, 14(5): 2384-2389. https://doi.org/10.12677/acm.2024.1451697

1. 引言

银屑病是一种慢性、难治性、炎症性皮肤病,发病率高,在全球占比约2%~3%,并呈逐年增长趋势。其病因复杂,主要涉及遗传易感性、环境触发因素及免疫失调。银屑病特征性临床表现是红色斑片及银白色鳞屑,主要临床分型包括斑块型银屑病(也称寻常型银屑病)、脓疱型银屑病、点滴状银屑病、红皮病型银屑病、关节型银屑病及逆向银屑病,其中斑块型银屑病最常见,主要好发于肘部、膝盖、头皮和下背部。随着研究发现的进一步了解,银屑病的发病并不是独立存在的,它可以有多种合并症,主要包括心脏代谢疾病,慢性肾脏疾病(CKD),胃肠道疾病,恶性肿瘤,情绪障碍,感染,银屑病关节炎(PsA) [1] ,除此之外,银屑病与皮肤系统、生殖系统、口腔眼系统、精神健康疾病等更多全身性疾病的关联也被揭示出来 [2] 。传统药物的治疗效果往往难以达到患者的治疗预期,因此,精准针对银屑病发病靶点的药物被迫切需求。

近年,研究表明,银屑病受细胞外细胞因子通路和细胞内信号分子之间复杂相互作用的调节,主要是由异常的真皮树突状细胞产生肿瘤坏死因子(TNF)和白介素23 (IL-23),并进一步产生白介素17 (IL-17)和白介素22 (IL-22)等从而产生炎症作用,另一方面,细胞内环磷酸腺苷(cAMP)的减少也会促进促炎因子IL-23、TNF-α等的生成从而促进炎症反应 [3] 。其中,备受关注的是IL-17家族,包括六种结构相关的细胞因子:IL-17A到IL-17F。其中,IL-17A、IL-17C和IL-17F在银屑病皮损中的表达增加,与银屑病的发病有关。尽管IL-17C和IL-17F在银屑病中表达水平较高,但IL-17A被认为是该家族中生物活性最强的细胞因子 [4] [5] 。IL-17A和IL-17F可以作为同源二聚体或IL-17A/F异源二聚体 [6] [7] 。迄今为止,IL-17A (通常称为 IL-17)由于其在自体免疫性疾病中的促炎作用而受到最大的关注。虽然它主要是由辅助性T细胞17 (Th17细胞)产生的 [8] 。最近,先天性免疫细胞,包括3型固有淋巴细胞(ILC3细胞)、γδT细胞、嗜中性粒细胞和肥大细胞,也被发现是IL-17的来源 [9] 。经过三期临床试验,Bimekizumab被美国食品和药物管理局(FDA)批准用于中重度银屑病的成年患者,并且是第一个且目前为止唯一批准用于选择性抑制两种主要细胞因子——白细胞介素17A (IL-17A)和白细胞介素17F (IL-17F)的银屑病治疗药物。

2. Bimekizumab概述

Bimekizumab是人源化IgG1单克隆抗体,是食品和药物管理局(FDA)批准的第一个同时抑制两种细胞因子——IL-17A及IL-17F的生物制剂,具有双重特异性的两个抗原结合位点,每个位点都能结合IL-17A和IL-17F单体。Bimekizumab通过双重中和IL-17A和IL-17F,能更有效地抑制细胞因子反应和中性粒细胞趋化性 [10] [11] 。

3. Bimekizumab作用机制

Bimekizumab是通过双重中和IL-17A和IL-17F来发挥作用的。IL-17A和IL-17F均来自于IL-17家族,IL-17家族主要包括IL-17A到IL-17F六种细胞因子。IL-17的主要来源是CD4T细胞——Th17细胞,另有研究表明,CD8T细胞、γδT细胞、先天淋巴细胞(ILC)、自然杀伤(NK)细胞、不变NK T细胞、粘膜相关不变T细胞、肥大细胞和潘氏细胞(Paneth细胞)也可能产生IL-17 [11] 。

3.1. IL-17A作用机制

IL-17A可直接作用于角质形成细胞以刺激细胞因子及趋化因子的产生,其中细胞因子包括抗微生物肽(AMPs)和β-防御素,而趋化因子包括趋化因子(C-X-C基序)配体1 (CXCL1),CXCL2,CXCL8和CCL20,这些分子经常在银屑病损伤处增加,以此来吸引嗜中性粒细胞、巨噬细胞和淋巴细胞的在皮损处的聚集 [12] 。研究表明,IL-17A能够增加半乳糖凝集素-8 (Galectin-8)的表达水平。半乳糖凝集素-8通过调节角质形成细胞的有丝分裂,进而促进这些细胞的增殖 [13] 。另外,IL-17A能够刺激角质形成细胞干细胞的增殖 [14] 。最新研究表明,除了对角质形成细胞的作用外,IL-17A还通过调节其他基质细胞、T细胞或单核细胞的活动参与了银屑病的发病机制。具体而言,IL-17A与IL-17RA和IL-17RC结合后能直接诱导皮肤中成纤维细胞产生IL-19和IL-24。这些分子进一步促进了角质形成细胞的增殖和银屑病的发展 [15] 。此外,IL-17A的释放也对其他免疫细胞产生作用,从而促进银屑病的发病机制。刘等人发现IL-17A能够抑制Tregs的抑制功能 [16] 。

3.2. IL-17F作用机制

IL-17F属于IL-17细胞因子家族,是一个同源的二聚体细胞因子,与IL-17A相似。它们在结构上有超过50%的相似性,并且在生物学功能上有重叠 [17] 。IL-17F和IL-17A具有相似的生物学作用机制,主要由Th17细胞在IL-23的刺激下合成。IL-17F被认为能够增强IL-17A的活性,因为它诱导角质形成细胞基因的表达。尽管IL-17F的生物活性比IL-17A低30倍,但它仍然对细胞信号传导产生重要影响 [18] [19] 。

与IL-17A一样,IL-17F也能与肿瘤坏死因子-α (TNF-α)协同诱导关键促炎性角质形成细胞介质的产生。经过重组TNF、IL-17A和IL-17F的体外刺激后,从银屑病性关节炎(PsA)患者获得的原代正常人皮肤成纤维细胞和滑膜细胞显示,IL-17F对慢性组织炎症产生了影响。相较于IL-17A,IL-17F在诱导促炎基因如IL-6和IL-8的表达方面具有一定效果,但其影响程度较为温和 [20] [21] [22] 。

3.3. IL-17A与IL-17F协同作用

与单独使用IL-17A的复合体模型相比,复合体外模型探索了IL-17A和IL-17F的双重中和在抑制炎症方面的作用 [21] [22] [23] 。来自PsA患者和真皮成纤维细胞的滑膜细胞用源自分选Th17细胞上清液的促炎介质处理,随后用抗IL17A单克隆抗体、抗IL17F单克隆抗体或Bimekizumab (一种可同时中和IL-17A和IL-17F的人源化单克隆IgG1抗体)处理。

与IL-17A阻断获得的表达降低相比,Bimekizumab诱导的双重抑制导致IL-6、IL-8和其他炎症基因(即CXCL1、CXCL2、CXCL3和IL-15RA)表达的更大降低。与IL-17A或IL-17F阻断相比,使用Bimekizumab检测到更强的中性粒细胞通过跨孔通透膜迁移的抑制 [20] [23] [24] 。

角质形成细胞中高水平表达的钙粒蛋白A8 (S100A8)和钙粒蛋白A9 (S100A9)被认为是银屑病疾病活动的可靠生物标志物。研究指出,IL-17A和IL-17F能够显著诱导S100A8和S100A9的表达和释放 [25] 。

IL-17A和IL-17F既可以生成同源二聚体,也可以生成异源二聚体,并且这些异源二聚体被认为具有中等生物效力。IL-17A和IL-17F在银屑病皮损、非皮损皮肤以及PsA发炎的滑膜中的表达增加 [20] [21] [23] [26] [27] [28] 。

4. Bimekizumab临床应用

Bimekizumab目前通过了FDA,批准用于中重度银屑病的成年患者。近年,主要用于银屑病患者的生物制剂有Adalimumab (阿达木单抗)、Secukinumab (司库奇尤单抗)及Ustekinumab (乌司奴单抗)等,但对于皮损清除率仍存在一定的差异性。

在Bimekizumab与乌司奴单抗的多中心,双盲,活性对照和安慰剂对照3期试验的疗效和安全性对比实验中,通过交互反应技术,患者被随机分组,比例为4:2:1,其中,Bimekizumab治疗组每4周给药一次,剂量为320 mg分两次皮下注射;乌司奴单抗治疗组在第0周、4周给药45 mg或90 mg (基线体重相关剂量),后调整为每12周给药一次,皮下注射;安慰剂组每4周给药一次,但在第16周时改为Bimekizumab每4周给药一次,剂量为320 mg分两次皮下注射。经试验,在第16周,比美单抗组321名患者中有273名(85%)患者PASI评分可改善90%,而乌司奴单抗组163名患者中为81名(50%) PASI评分可改善90% (风险差异35 [95%CI 27~43];P < 0.001),安慰剂组83名患者中的4名(5%)患者PASI评分可改善90% (风险差异80 [74~86];P < 0.0001)。在对395名接受Bimekizumab治疗的患者进行了52周的观察后,其中有24例报告了严重的治疗紧急不良事件,占总体的6%,而在163名接受乌司奴单抗治疗的患者中,有13例报告了相同类型的事件,占总体的8%。Bimekizumab在治疗重度斑块型银屑病方面比乌司奴单抗和安慰剂表现更为有效 [29] 。

在Bimekizumab与阿达木单抗对比试验中,按照1:1:1的比例将中重度斑块型银屑病患者分为3组,其中,第1组为每4周Bimekizumab给药一次320 mg,皮下注射,持续56周;第二组为Bimekizumab 320 mg,在开始的16周为每4周给药一次,从第16周到56周调整为每8周给药一次;第3组为阿达木单抗40 mg每2周皮下注射一次,持续24周,与此同时给予Bimekizumab每4周皮下注射一次320 mg,持续56周。在第16周,对319名接受Bimekizumab的患者和159名接受阿达木单抗的患者进行观察发现,PASI 90反应分别为86.2%和47.2%。经过调整后的风险差异为39.3个百分点,95%置信区间为30.9至47.7,非劣效性和优越性P值均小于0.001。上呼吸道感染、口腔溃疡(通常是轻度或中度)、高血压以及腹泻是Bimekizumab最常见的不良事件。在这项为期56周的试验中,Bimekizumab在减轻中重度斑块型银屑病患者的症状和体征方面在16周内与阿达木单抗表现不相上下 [30] 。

在Bimekizumab与司库奇尤单抗的对比的3b期临床试验中,将患者按1:1的比例分为Bimekizumab治疗组及司库奇尤单抗治疗组,其中,Bimekizumab治疗组每4周皮下注射一次320 mg,持续48周,在第16周时,将患者按照1:2比例,分别进行每4周给药一次直至48周及每8周给药一次直至48周;司库奇尤单抗治疗组为每周皮下注射一次300 mg至第4周,后调整为每4周给药一次直至48周。在第16周时,Bimekizumab组中共有230名患者(61.7%),而司库奇尤单抗组中有181名患者(48.9%),显示出与基线相比PASI评分降低了100% (PASI 100) (调整后的风险差异为12.7个百分点,95%置信区间为5.8至19.6)。在第48周,有250名患者(67.0%)接受Bimekizumab治疗,显示出PASI 100,而在171名患者(46.2%)接受司库奇尤单抗治疗的组中出现相同反应(经过调整后的风险差异为20.9个百分点,95%置信区间为14.1至27.7,P值小于0.001)。在第4周时间点,Bimekizumab组中有265例患者(占71.0%),其 PASI 评分比基线降低了75% 或更多,而司库奇尤单抗组中仅175例患者(占47.3%)表现出相同的改善。对于中度至重度银屑病患者,使用Bimekizumab相较于司库奇尤单抗治疗在16周和48周的治疗期间有更高的皮肤清除率 [31] 。

此外,另有研究Bimekizumab在从阿达木单抗、乌司奴单抗或司库奇尤单抗转换的中度至重度斑块状银屑病患者中的疗效和安全性:III/IIIb期试验的结果中显示,对于患有反应不充分的银屑病患者,转换至比美珠单抗治疗后,他们能够迅速获得高水平的临床反应和健康相关生活质量(HRQoL)的改善。改用Bimekizumab可能反映了与IL-17A和IL-17F双重抑制相关的抗炎作用的增强,这可能带来了更多的益处。总的来说,改用Bimekizumab的耐受性良好,没有发现新的安全问题 [32] 。

由上述试验可见,Bimekizumab在治疗斑块型银屑病患者中,疗效显著。最常见的不良反应为上呼吸道感染、口腔溃疡(通常是轻度或中度)、鹅口疮、高血压以及腹泻。未来还需要更多的实验研究来探寻和验证。

5. 小结与展望

Bimekizumab在银屑病的治疗中主要针对IL-17A/IL-17F双重抑制,相较于单一抑制IL-17A而言,在上述试验中表现出了良好的效果,安全性也较高。

对于银屑病患者来说,皮损清除、症状得以缓解从而提高生活质量是重中之重。患者急需要更行之有效、反应时间更短、安全性更高的药物来达到理想的治疗效果。

Bimekizumab提供了更好的治疗效果,但还需要在我国的大量的临床科数据研究以便其进入中国市场,相信在不久的将来Bimekizumab会造福更多的银屑病患者。

参考文献

[1] Takeshita, J., Grewal, S., Langan, S.M., et al. (2017) Psoriasis and Comorbid Diseases: Epidemiology. Journal of the American Academy of Dermatology, 76, 377-390.
https://doi.org/10.1016/j.jaad.2016.07.064
[2] Bu, J., Ding, R., Zhou, L., Chen, X. and Shen, E. (2022) Epidemiology of Psoriasis and Comorbid Diseases: A Narrative Review. Frontiers in Immunology, 13, Article 880201.
https://doi.org/10.3389/fimmu.2022.880201
[3] Conrad, C. and Gilliet, M. (2018) Psoriasis: From Pathogenesis to Targeted Therapies. Clinical Reviews in Allergy & Immunology, 54, 102-113.
https://doi.org/10.1007/s12016-018-8668-1
[4] Johansen, C., Usher, P.A., Kjellerup, R.B., Lundsgaard, D., Iversen, L. and Kragballe, K. (2009) Characterization of the Interleukin-17 Isoforms and Receptors in Lesional Psoriatic Skin. British Journal of Dermatology, 160, 319-324.
https://doi.org/10.1111/j.1365-2133.2008.08902.x
[5] Blauvelt, A. and Chiricozzi, A. (2018) The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clinical Reviews in Allergy & Immunology, 55, 379-390.
https://doi.org/10.1007/s12016-018-8702-3
[6] Chang, S.H. and Dong, C. (2007) A Novel Heterodimeric Cytokine Consisting of IL-17 and IL-17F Regulates Inflammatory Responses. Cell Research, 17, 435-440.
https://doi.org/10.1038/cr.2007.35
[7] Bertelsen, T., Iversen, L. and Johansen, C. (2018) The Human IL-17A/F Heterodimer Regulates Psoriasis-Associated Genes through IκBζ. Experimental Dermatology, 27, 1048-1052.
https://doi.org/10.1111/exd.13722
[8] McGeachy, M.J., Cua, D.J. and Gaffen, S.L. (2019) The IL-17 Family of Cytokines in Health and Disease. Immunity, 50, 892-906.
https://doi.org/10.1016/j.immuni.2019.03.021
[9] Keijsers, R.R., Joosten, I., van Erp, P.E., Koenen, H.J. and van de Kerkhof, P.C. (2014) Cellular Sources of IL-17 in Psoriasis: A Paradigm Shift? Experimental Dermatology, 23, 799-803.
https://doi.org/10.1111/exd.12487
[10] Chiricozzi, A., De Simone, C., Fossati, B. and Peris, K. (2019) Emerging Treatment Options for the Treatment of Moderate to Severe Plaque Psoriasis and Psoriatic Arthritis: Evaluating Bimekizumab and Its Therapeutic Potential. Psoriasis: Targets and Therapy, 9, 29-35.
https://doi.org/10.2147/PTT.S179283
[11] Mills, K.H.G. (2023) IL-17 and IL-17-Producing Cells in Protection versus Pathology. Nature Reviews Immunology, 23, 38-54.
https://doi.org/10.1038/s41577-022-00746-9
[12] Furue, M., Furue, K., Tsuji, G. and Nakahara, T. (2020) Interleukin-17A and Keratinocytes in Psoriasis. International Journal of Molecular Sciences, 21, Article 1275.
https://doi.org/10.3390/ijms21041275
[13] Lo, Y.H., Li, C.S., Chen, H.L., et al. (2021) Galectin-8 Is Upregulated in Keratinocytes by IL-17A and Promotes Proliferation by Regulating Mitosis in Psoriasis. Journal of Investigative Dermatology, 141, 503-511.E9.
https://doi.org/10.1016/j.jid.2020.07.021
[14] Ekman, A.K., Bivik Eding, C., Rundquist, I. and Enerbäck, C. (2019) IL-17 and IL-22 Promote Keratinocyte Stemness in the Germinative Compartment in Psoriasis. Journal of Investigative Dermatology, 139, 1564-1573.E8.
https://doi.org/10.1016/j.jid.2019.01.014
[15] Xu, X., Prens, E., Florencia, E., et al. (2021) Interleukin-17A Drives IL-19 and IL-24 Expression in Skin Stromal Cells Regulating Keratinocyte Proliferation. Frontiers in Immunology, 12, Article 719562.
https://doi.org/10.3389/fimmu.2021.719562
[16] Liu, Y., Zhang, C., Li, B., et al. (2021) A Novel Role of IL-17A in Contributing to the Impaired Suppressive Function of Tregs in Psoriasis. Journal of Dermatological Science, 101, 84-92.
https://doi.org/10.1016/j.jdermsci.2020.09.002
[17] Zhang, X., Angkasekwinai, P., Dong, C. and Tang, H. (2011) Structure and Function of Interleukin-17 Family Cytokines. Protein & Cell, 2, 26-40.
https://doi.org/10.1007/s13238-011-1006-5
[18] Monin, L. and Gaffen, S.L. (2018) Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harbor Perspectives in Biology, 10, a028522.
https://doi.org/10.1101/cshperspect.a028522
[19] Wright, J.F., Bennett, F., Li, B., et al. (2008) The Human IL-17F/IL-17A Heterodimeric Cytokine Signals through the IL-17RA/IL-17RC Receptor Complex. Journal of Immunology, 181, 2799-2805.
https://doi.org/10.4049/jimmunol.181.4.2799
[20] Maroof, A., Smallie, T., Archer, S., et al. (2017) Dual IL-17A and IL-17F Inhibition with Bimekizumab Provides Evidence for IL-17F Contribution to Immune-Mediated Inflammatory Skin Response. Journal of Investigative Dermatology, 137, S120.
https://doi.org/10.1016/j.jid.2017.02.722
[21] Glatt, S., Baeten, D., Baker, T., et al. (2018) Dual IL-17A and IL-17F Neutralisation by Bimekizumab in Psoriatic Arthritis: Evidence from Preclinical Experiments and a Randomised Placebo-Controlled Clinical Trial That IL-17F Contributes to Human Chronic Tissue Inflammation. Annals of the Rheumatic Diseases, 77, 523-532.
https://doi.org/10.1136/annrheumdis-2017-212127
[22] Maroof, A., Okoye, R., Smallie, T., et al. (2017) Bimekizumab Dual Inhibition of IL-17A and IL-17F Provides Evidence of IL-17F Contribution to Chronic Inflammation in Disease-Relevant Cells. Annals of the Rheumatic Diseases, 76, Article 213.
https://doi.org/10.1136/annrheumdis-2017-eular.4966
[23] Maroof, A., Baeten, D., Archer, S., Griffiths, M. and Shaw, S. (2017) IL-17F Contributes to Human Chronic Inflammation in Synovial Tissue: Preclinical Evidence with Dual IL-17A and IL-17F Inhibition with Bimekizumab in Psoriatic Arthritis. Annals of the Rheumatic Diseases, 76, A13.
https://doi.org/10.1136/annrheumdis-2016-211050.13
[24] Guilloteau, K., Paris, I., Pedretti, N., et al. (2010) Skin Inflammation Induced by the Synergistic Action of IL-17A, IL-22, Oncostatin M, IL-1α, and TNF-α Recapitulates Some Features of Psoriasis. Journal of Immunology, 184, 5263-5270.
https://doi.org/10.4049/jimmunol.0902464
[25] Christmann, C., Zenker, S., Martens, L., et al. (2021) Interleukin 17 Promotes Expression of Alarmins S100A8 and S100A9 during the Inflammatory Response of Keratinocytes. Frontiers in Immunology, 11, Article 599947.
https://doi.org/10.3389/fimmu.2020.599947
[26] Johnston, A., Fritz, Y., Dawes, S.M., et al. (2013) Keratinocyte Overexpression of IL-17C Promotes Psoriasiform Skin Inflammation. Journal of Immunology, 190, 2252-2262.
https://doi.org/10.4049/jimmunol.1201505
[27] Chiricozzi, A., Suárez-Fariñas, M., Fuentes-Duculan, J., et al. (2016) Increased Expression of Interleukin-17 Pathway Genes in Nonlesional Skin of Moderate-to-Severe Psoriasis Vulgaris. British Journal of Dermatology, 174, 136-145.
https://doi.org/10.1111/bjd.14034
[28] Van Baarsen, L.G., Lebre, M.C., van der Coelen, D., et al. (2014) Heterogeneous Expression Pattern of Interleukin 17A (IL-17A), IL-17F and Their Receptors in Synovium of Rheumatoid Arthritis, Psoriatic Arthritis and Osteoarthritis: Possible Explanation for Nonresponse to Anti-IL-17 Therapy? Arthritis Research & Therapy, 16, Article No. 426.
https://doi.org/10.1186/s13075-014-0426-z
[29] Reich, K., Papp, K.A., Blauvelt, A., et al. (2021) Bimekizumab versus Ustekinumab for the Treatment of Moderate to Severe Plaque Psoriasis (BE VIVID): Efficacy and Safety from a 52-Week, Multicentre, Double-Blind, Active Comparator and Placebo Controlled Phase 3 Trial. The Lancet, 397, 487-498.
https://doi.org/10.1016/S0140-6736(21)00125-2
[30] Warren, R.B., Blauvelt, A., Bagel, J., et al. (2021) Bimekizumab versus Adalimumab in Plaque Psoriasis. The New England Journal of Medicine, 385, 130-141.
https://doi.org/10.1056/NEJMoa2102388
[31] Reich, K., Warren, R.B., Lebwohl, M., et al. (2021) Bimekizumab versus Secukinumab in Plaque Psoriasis. The New England Journal of Medicine, 385, 142-152.
https://doi.org/10.1056/NEJMoa2102383
[32] Kokolakis, G., Warren, R.B., Strober, B., et al. (2023) Bimekizumab Efficacy and Safety in Patients with Moderate-to-Severe Plaque Psoriasis Who Switched from Adalimumab, Ustekinumab or Secukinumab: Results from Phase III/IIIb Trials. British Journal of Dermatology, 188, 330-340.
https://doi.org/10.1093/bjd/ljac089