儿童支气管肺发育不良与成年期慢性肺部疾病关系研究进展
Research Progress on the Relationship between Bronchopulmonary Dysplasia in Children and Chronic Lung Diseases in Adulthood
DOI: 10.12677/acm.2024.1441164, PDF, HTML, XML, 下载: 41  浏览: 82 
作者: 伍倩茹, 舒 畅*:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 支气管肺发育不良哮喘慢性阻塞性肺疾病肺动脉高压Bronchopulmonary Dysplasia Asthma Chronic Obstructive Pulmonary Disease Pulmonary Hypertension
摘要: 支气管肺发育不良是一种慢性肺疾病,近年来随着早产儿存活率的上升,支气管肺发育不良的发生呈现一个上升趋势。研究发现,支气管肺发育不良患儿远期可能有气体交换和气道高反应性等表现,部分支气管肺发育不良患儿成年后有肺功能受损及运动耐受下降。肺动脉高压的发生使早产儿易发生支气管肺发育不良。支气管肺发育不良与哮喘、慢性阻塞性肺疾病及肺动脉高压之间似乎有一定的相关性,但这些说法尚存在一定争议。本文对近年来支气管肺发育不良与哮喘、慢性阻塞性肺疾病及肺动脉高压之间的关系的研究进展进行综述,为支气管肺发育不良患儿远期预后的防治及研究提供思路。
Abstract: Bronchopulmonary dysplasia is a chronic lung disease, with the increase of survival rate of premature infants in recent years, the incidence of bronchopulmonary dysplasia showed an upward trend. The study found that children with bronchopulmonary dysplasia may have long-term gas exchange and airway hyperresponsiveness, and some children with bronchopulmonary dysplasia have impaired lung function and decreased exercise tolerance in adulthood. The occurrence of pulmonary hypertension makes premature infants prone to bronchopulmonary dysplasia. There seems to be a certain correlation between bronchopulmonary dysplasia and asthma, chronic obstructive pulmonary disease and pulmonary hypertension, but these claims are still controversial. This article reviews the research progress on the relationship among bronchopulmonary dysplasia and asthma, chronic obstructive pulmonary disease and pulmonary hypertension in recent years, in order to provide ideas for the prevention and treatment of long-term prognosis of children with bronchopulmonary dysplasia.
文章引用:伍倩茹, 舒畅. 儿童支气管肺发育不良与成年期慢性肺部疾病关系研究进展[J]. 临床医学进展, 2024, 14(4): 1330-1336. https://doi.org/10.12677/acm.2024.1441164

1. 引言

支气管肺发育不良(bronchopulmonary dysplasia)是一种慢性肺疾病,通常发生于罹患肺透明膜病、接受氧气、机械通气治疗的早产儿。2018年提出BPD新的诊断标准:出生胎龄 < 32周的早产儿在校正胎龄(postmenstrual age, PMA) 36周时仍有不同程度氧依赖和呼吸支持手段 ≥ 3天,并且影像学提示有肺间质病变,可诊断为BPD [1] 。近年来随着早产儿存活率上升,支气管肺发育不良呈现一个上升趋势 [2] ,BPD的远期预后成为人们近年来关注的焦点。因BPD患儿FEV1、FEF50%、FEV1/FVC及FiNO均降低,BPD患儿可能有气体交换和气道高反应性等表现,与哮喘的一些表现具有相似性 [3] 。而有研究发现,部分BPD患儿成年后有肺功能受损及运动耐受下降,因此发生COPD的风险增加 [4] ,对BPD患儿长期随访,增加对BPD患儿肺部生长和呼吸健康长期的关注就显得尤为重要,以此来了解BPD本身是否是一些呼吸道相关疾病的危险因素或协同因素。目前国内外学者已经开始探索BPD与一些慢性呼吸道疾病如哮喘及慢性阻塞性肺疾病之间的相关性。本文就BPD与慢性呼吸系统疾病之间的关系近年来的研究作一综述,为BPD的患儿远期预后的防治提供思路。

2. BPD与哮喘的关系

越来越多的研究表明早产与一些慢性呼吸道疾病如哮喘等有一定的相关性,有学者 [5] 使用150多万儿童的数据进行META分析,早产使儿童发生喘息障碍风险增加1.71倍,尤其是极早产会更加增加哮喘发生的风险,而早产是新生儿发生BPD的高危因素之一,这使得人们开始对BPD与哮喘之间的关系有了更多的关注。BPD与哮喘之间的关系在以下七个方面具有相似性:1) 气道高反应性;2) 端粒长度;3) 低氧化状态;4) 胰岛素受体底物蛋白;5) 核因子NF-E2相关因子2 (Nrf2)及其激活剂;6) 生长转化因子β (TGF-β);7) wnt信号通路。

2.1. 气道高反应性

BPD和哮喘都有气道痉挛表现,考虑均与气道平滑肌过度收缩导致。有研究发现 [6] 人气道平滑肌(HASM)上有IL-4、IL-13受体的表达,并通过信号转导器、细胞外调节激酶(ERK)、转录激活因子(STAT)-6等磷酸化的增加从而对IL-4、IL-13这些细胞因子作出反应,ERK的激活会引起HASM细胞中的嗜酸性粒细胞素释放,而哮喘患者出现嗜酸性粒细胞募集趋化可能与气道平滑肌相关。BPD和哮喘患者出现的气道高反应提示二者可能在气道平滑肌细胞的细胞增殖相关的信号转导通路上有着相似性 [7] [8] 。Anna James [9] 等对30名BPD患儿和30名确诊支气管哮喘患儿通过横断面研究方法进行研究,对比两组呼出一氧化氮分数(fraction of exhaled nitric oxide, FENO)、乙酰胆碱和甘露醇对支气管的激发性、静态和动态肺功能,并使用哮喘控制测试(ACT)评估由于进行该项对照试验所引起的患儿呼吸道症状,结果发现与哮喘组患儿相比,BPD组肺功能指标(FEV1%, FEV1/FVC%, FEF50%)及一氧化氮弥散能力(DLCO%)均减低,FENO试验BPD组也显著低于哮喘组,乙酰胆碱试验在两组之间阳性率比较,差异无统计学意义。甘露醇激发试验BPD患儿相比哮喘患儿反应性降低。综上BPD患儿有肺功能降低,但与哮喘患儿相比,BPD患儿在没有较多气道炎症的表现,BPD气道高反应性是否与气道炎症有相关性目前尚不清楚,是否可以使用抗炎药物对BPD患儿早期进行干预以预防未来进行性发展为哮喘尚存在争议。

2.2. 端粒长度

端粒长度是衡量细胞衰老的标志,与年龄呈负相关,而炎症、氧化应激等可能会加速端粒缩短速度。研究发现 [10] ,唾液中端粒的长度与肺功能之间存在关联性,可能是由于持续氧化应激导致气道炎症从而影响肺功能改变。Henckel E等 [11] 比较了29名BPD患儿及28名足月出生的哮喘患儿的端粒长度,发现BPD组和哮喘组的端粒长度没有差异,但该研究提到,由于样本量不够充足,研究结果可能有一定的偏倚。因此,端粒长度与BPD及哮喘是否有一定的相关性还有待进一步研究。

2.3. 低氧化状态

机体受到氧化应激刺激产生的氧自由基会对细胞等产生损伤 [12] 。维生素A能够通过增强上皮屏障功能、诱导免疫耐受、抗氧化清除氧自由基,维持细胞的稳定性 [13] 。Amali E Samarasighe等 [14] 将95名有严重哮喘的患儿和47名同年龄的非哮喘患儿血浆样本进行比对,发现严重哮喘患儿的IgG1、IgG2和IgA水平较低,其中大约一半的哮喘患儿IgG1水平低于特定年龄标准。Amali E Samarasighe等人同时也发现维生素A在大多数哮喘儿童中表现为不足或缺乏,并且与IgG1呈正相关,考虑维生素A缺乏及降低会引起机体免疫功能降低及呼吸道屏障功能降低,这可能是哮喘发生的原因。维生素A在气道发育中有着重要的作用,维生素A的最终代谢产物维甲酸在肺泡早期、维持和再生中扮演着重要的角色 [15] 。有研究表明维生素A有助于预防BPD,可以降低早产儿发生BPD的风险 [16] [17] 。有一项荟萃研究发现,补充维生素A组的BPD发生率显著低于对照组(OR = 0.67, 95% CI [0.52~0.88]) [18] 。但是也有学者提出维生素A对预防BPD无效,BPD的发生与近期维生素A的缺乏不具有相关性 [19] 。因此维生素A对预防BPD的作用目前尚存在争议,需要更多的数据及研究证明。而哮喘和BPD的抗氧化系统中其他组成部分也有异常,如谷胱甘肽过氧化物酶活性改变。硒是谷胱甘肽过氧化物酶组成部分,缺硒会引起谷胱甘肽过氧化物酶活性降低,使得机体抗氧化应激能力下降。哮喘组患儿硒水平显著低于正常组 [20] 。一项前瞻性试验研究发现BPD患儿出生后第一月硒明显降低 [21] ,在哮喘和BPD中均有硒水平降低,从而引起谷胱甘肽过氧化物酶活性改变,使得二者的抗氧化系统发生改变。但硒水平的降低是否为BPD患儿发展为哮喘的高危因素目前尚无相关研究。

2.4. 胰岛素受体底物蛋白

根据目前研究可知,IGF-1信号通路在肺部发育和先天性疾病、炎症和纤维化疾病中发挥作用,胰岛素受体底物蛋白是胰岛素样生长因子-1 (IGF-1)等信号传导通路中较为重要的蛋白。研究表明 [22] [23] ,促炎细胞因子、白细胞介素等通过Ser/Thr磷酸化抑制胰岛素受体底物蛋白相关信号通路(IGFR、TGF-β),从而抑制胰岛素受体底物蛋白信号传导,导致IGF-1信号传导缺陷,使得人类肺泡增生。在BPD动物模型中,IGF-1信号传导缺陷导致肺结构被破坏,这些相关信号通路被抑制可能与BPD的发展有关。研究 [24] 发现Th2淋巴细胞能够释放IL-4、IL-5、IL-9和IL-13参与哮喘的发生,而胰岛素受体底物蛋白(ISR-1)与IL-4水平之间存在一定的关系。有研究表明 [25] 用针对ISR-1的shRNA慢病毒感染细胞降低ISR-1水平和使用ISR抑制剂NT157降解ISR,均可降低IL-4、IL-13刺激细胞的增殖,因此考虑ISR-1参与IL-4、IL-13刺激细胞增殖的过程。而IL-4、IL-13可提高气道高反应性、使外周血嗜酸粒细胞增多、促进粘液分泌和免疫球蛋白E (IgE)生成,参与哮喘的发生 [26] 。综上,胰岛素受体底物蛋白(IRS)与BPD及哮喘的发生有一定的关系,IRS可能是通过改变IL-4受体、IGF-1信号通路引起肺部疾病。BPD与哮喘之间的关系与IRS之间的相关性还待进一步研究。

2.5. 核因子NF-E2相关因子2 (Nrf2)及其激活剂

抗氧化反应原件驱动细胞保护蛋白表达的主要调节因子为核因子NF-E2相关因子2 (Nrf2),Nrf2信号转导激活能够防止氧化应激导致的细胞和组织损伤 [27] 。Nrf2与BPD的发病机制之间的关系是一个较新的研究领域。近期研究发现Nrf2在囊状肺成熟过程中,可能参与调节器官发育、肺形态发生及氧化还原平衡。有小鼠模型研究发现,Nrf2有助于减轻高氧环境下肺泡生长抑制并提高高氧环境下新生小鼠存活率,Nrf2缺乏会加重高氧引起的新生鼠肺损伤 [28] [29] 。早产鼠在高氧情况下,Nrf2会显著增加,对肺组织起到一定的保护作用,而Nrf2被抑制的情况下,细胞凋亡会进一步增加 [30] ,这表明Nrf2可以降低肺血管内皮细胞凋亡,有助于减轻高氧导致的肺部损伤并预防BPD的发生,可能会对肺发育及高氧导致的肺损伤有有益作用。

在一项以卵清蛋白(OVA)为诱导,环境超细颗粒(UFP)为致敏佐剂的小鼠哮喘模型中,Nrf2被敲除小鼠组与正常小鼠组相比,炎性细胞浸润明显,Nrf2缺乏能增强UFP对过敏致敏的佐剂作用,引起肺部炎症。同时发现从Nrf2敲除小鼠骨髓造血干细胞中分离的树突样细胞在静息状态下能够产生高水平IL-6和低水平IL-12p70,考虑Nrf2有抗炎作用 [31] 。

2.6. 生长转化因子β (TGF-β)

TGF-β具有抗炎和促纤维化的作用,是参与哮喘气道重塑及气道炎症的关键因子 [32] 。TGF-β活性失调会驱动患者气道各层损伤从而进一步引起气道重塑及肺部纤维化等,也可以引起纤维化肺组织中其他受体的表达 [33] 。Xing YM等 [34] 发现1,25-(OH)D3可以降低TGF-β在气道平滑肌细胞中的表达,抑制气道平滑肌细胞表型转化,从而延缓气道重塑,考虑TGF-β及1,25-(OH)D3水平变化与气道重建具有相关性。BPD患儿肺组织有纤维化,而TGF-β在肺纤维化发展及不成熟肺高氧性损伤中有着一定作用。当TGF-β1相关基因及TGF-β1/Smad3信号通路下调时,TGF-β1诱导的气道重塑受到抑制,可以延缓BPD的进展,考虑TGF-β1可能参与了BPD肺纤维化的病理过程 [35] 。Mansi Y等 [36] 发现BPD组患者的血清中的TGF-β1较非BPD组升高,考虑因为早产儿出生后机械通气时间长引起炎症反应,促进TGF-β1增加,TGF-β1与肺组织细胞膜上的丝氨酸/苏氨酸受体结合,促进关键蛋白磷酸化,诱导促纤维化细胞因子及血管生长细胞因子生成,阻碍肺微血管发育并增强微血管通透性,诱导趋化炎性因子释放,从而进一步促进TGF-β1合成,形成恶性循环,导致BPD的发生。

2.7. Wnt信号通路

Wnt信号通路是干细胞增殖、更新、分化所必需的细胞通讯系统,在胚胎发育、成熟组织稳态及损伤组织修复中具有活性,对肺部发育的每个阶段都有着重要的作用 [37] 。Sharma [38] 等人研究表明,wnt信号通路与肺功能受损有关,可以用于鉴定与哮喘患者肺功能损害发病机制有关的基因。一项研究 [39] 选取50对双胞胎新生儿,这些双胞胎新生儿中有51人有BPD,49人没有BPD,将这些新生儿血片中分离的DNA进行外显子测序,结果发现在BPD患儿中调控wnt信号通路等258个具有罕见非同义突变基因显著升高表达。

PDGFRα阳性(PDGFRA)成纤维细胞对肺泡化至关重要,并且在BPD患者有PDGFRA成纤维细胞减少。有一项研究发现 [40] ,在最初高氧环境下,PDGFRA基质及肌成纤维细胞减少可以通过细胞增殖等代偿性恢复,在高氧环境第7天,用小鼠的PN7 PDGFRA (第7天高氧环境下PDGFRA)成纤维细胞制成的类器官表现出肺泡I型细胞分化减少,而wnt信号通路被激活后出现肺泡类器官形成与生长,并增强了肺泡II型细胞分化。上述实验中小鼠肺泡I型、II型上皮细胞分化减少可能是由于暴露于高氧环境下的PDGFRA成纤维细胞使wnt信号通路选择性降低,导致PDGFRA肌成纤维细胞分化减少,使得PDGFRA基质成纤维细胞的分化在肺泡化的过程中被抑制,从而使肺泡I型、II型上皮细胞分化减少而增加发生BPD的风险。BPD发生可能是由于wnt信号通路异常引起肺损伤,但wnt信号通路在BPD发病机制中的确切作用还需进一步探索研究。综上,wnt信号通路在肺部发育中有着重要作用,与儿童哮喘及BPD的发生有着重要作用,未来可以考虑通过干预wnt信号通路中的一些特定蛋白来预防肺部损伤。

3. 肺动脉高压(PH)

儿童肺动脉高压(PH)与一些发育性肺部疾病如支气管肺发育不良等具有相关性。早产儿有畸形毛细血管床,伴有肺血管发育失调,表现为肺毛细血管分布异常和血管生长停滞,这种血管系统易受到高氧、肺泡缺氧等的影响,从而导致平滑肌增殖并将肌成纤维细胞和成纤维细胞整合到血管壁中,导致肺血管阻力增加、血管顺应性降低,最终导致PH [41] 。胎龄小、体重低下的早产儿肺泡发育尚不成熟,易受到外界因素的影响加重肺部炎症反应,这些外源性因素和未成熟肺部本身发育问题导致结构相关血管形成、肺泡血管功能异常和肺泡受损,从而形成肺动脉高压;早产儿NO合成酶活性较低,NO合成降低会导致肺血管舒张性降低,患儿发生肺动脉高压的发生率增加,使得早产儿更易发生BPD [42] 。

4. 小结

随着早产儿的存活率越来越高,早产儿发生BPD的风险逐年上升,使得人们开始对BPD患儿的远期预后开始有了一定的关注。BPD属于一种慢性肺疾病,与哮喘、COPD是否具有相关性仍有一定的争议性。BPD与哮喘、COPD及肺动脉高压之间的关系还有待进一步研究,尽快探明其中发病机制的关键因素,将为改善BPD患儿的预后提供合理的预防措施,从而改善BPD患儿的生活质量。

NOTES

*通讯作者。

参考文献

[1] Higgins, R.D., Jobe, A.H., Koso-Thomas, M., et al. (2018) Bronchopulmonary Dysplasia: Executive Summary of a Workshop. The Journal of Pediatrics, 197, 300-308.
https://doi.org/10.1016/j.jpeds.2018.01.043
[2] Bancalari, E. and Jain, D. (2019) Bronchopulmonary Dysplasia: 50 Years after the Original Description. Neonatology, 115, 384-391.
https://doi.org/10.1159/000497422
[3] 周纯, 谭玲. 学龄期儿童支气管肺发育不良与哮喘的异同研究[J]. 中国妇幼保健, 2020, 35(6): 1078-1080.
[4] Gilfillan, M., Bhandari, A. and Bhandari, V. (2021) Diagnosis and Management of Bronchopulmonary Dysplasia. The BMJ, 375, n1974.
https://doi.org/10.1136/bmj.n1974
[5] Been, J.V., Lugtenberg, M.J., Smets, E., et al. (2014) Preterm Birth and Childhood Wheezing Disorders: A Systematic Review and Meta-Analysis. PLOS Medicine, 11, e1001596.
https://doi.org/10.1371/journal.pmed.1001596
[6] Moore, P.E., Church, T.L., Chism, D.D., et al. (2002) IL-13 and IL-4 Cause Eotaxin Release in Human Airway Smooth Muscle Cells: A Role for ERK. American Journal of Physiology-Lung Cellular and Molecular Physiology, 282, L847-L853.
https://doi.org/10.1152/ajplung.00245.2001
[7] Deng, Y., Zhang, Y., Wu, H., et al. (2017) Knockdown of FSTL1 Inhibits PDGF-BB-Induced Human Airway Smooth Muscle Cell Proliferation and Migration. Molecular Medicine Reports, 15, 3859-3864.
https://doi.org/10.3892/mmr.2017.6439
[8] Johnson, P.R., Roth, M., Tamm, M., et al. (2001) Airway Smooth Muscle Cell Proliferation Is Increased in Asthma. American Journal of Respiratory and Critical Care Medicine, 164, 474-477.
https://doi.org/10.1164/ajrccm.164.3.2010109
[9] Nordlund, B., James, A., Ebersjö, C., et al. (2017) Differences and Similarities between Bronchopulmonary Dysplasia and Asthma in Schoolchildren. Pediatric Pulmonology, 52, 1179-1186.
https://doi.org/10.1002/ppul.23741
[10] Hadchouel, A., Marchand-Martin, L., Franco-Montoya, M.L., et al. (2015) Salivary Telomere Length and Lung Function in Adolescents Born Very Preterm: A Prospective Multicenter Study. PLOS ONE, 10, e0136123.
https://doi.org/10.1371/journal.pone.0136123
[11] Henckel, E., Svenson, U., Nordlund, B., et al. (2018) Telomere Length Was Similar in School-Age Children with Bronchopulmonary Dysplasia and Allergic Asthma. Acta Paediatrica, 107, 1395-1401.
https://doi.org/10.1111/apa.14294
[12] Singh, A., Kukreti, R., Saso, L. and Kukreti, S. (2019) Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules, 24, Article 1583.
https://doi.org/10.3390/molecules24081583
[13] Xavier-Elsas, P., Vieira, B.M., Masid-de-Brito, D., et al. (2019) The Need to Consider Context in the Evaluation of Anti-Infectious and Immunomodulatory Effects of Vitamin A and Its Derivatives. Current Drug Targets, 20, 871-878.
https://doi.org/10.2174/1389450120666181217095323
[14] Samarasinghe, A.E., Penkert, R.R., Hurwitz, J.L., et al. (2020) Questioning Cause and Effect: Children with Severe Asthma Exhibit High Levels of Inflammatory Biomarkers Including Beta-Hexosaminidase, but Low Levels of Vitamin A and Immunoglobulins. Biomedicines, 8, Article 393.
https://doi.org/10.3390/biomedicines8100393
[15] Talaei, M., Hughes, D.A., Mahmoud, O., et al. (2021) Dietary Intake of Vitamin A, Lung Function and Incident Asthma in Childhood. European Respiratory Journal, 58, Article 2004407.
https://doi.org/10.1183/13993003.04407-2020
[16] Jensen, E.A., Roberts, R.S. and Schmidt, B. (2020) Drugs to Prevent Bronchopulmonary Dysplasia: Effect of Baseline Risk on the Number Needed to Treat. The Journal of Pediatrics, 222, 244-247.
https://doi.org/10.1016/j.jpeds.2020.01.070
[17] Naeem, A., Ahmed, I. and Silveyra, P. (2019) Editor’s Pick: Bronchopulmonary Dysplasia: An Update on Experimental Therapeutics. European Medical Journal, 4, 20-29.
https://doi.org/10.33590/emj/10313109
[18] Ding, Y., Chen, Z. and Lu, Y. (2021) Vitamin A Supplementation Prevents the Bronchopulmonary Dysplasia in Premature Infants: A Systematic Review and Meta-Analysis. Medicine, 100, e23101.
https://doi.org/10.1097/MD.0000000000023101
[19] Tolia, V.N., Murthy, K., McKinley, P.S., et al. (2014) The Effect of the National Shortage of Vitamin A on Death or Chronic Lung Disease in Extremely Low-Birth-Weight Infants. JAMA Pediatrics, 168, 1039-1044.
https://doi.org/10.1001/jamapediatrics.2014.1353
[20] Fabian, E., Pölöskey, P., Kósa, L., et al. (2013) Nutritional Supplements and Plasma Antioxidants in Childhood Asthma. Wiener klinische Wochenschrift, 125, 309-315.
https://doi.org/10.1007/s00508-013-0359-6
[21] Mostafa-Gharehbaghi, M., Mostafa-Gharabaghi, P., Ghanbari, F., et al. (2012) Determination of Selenium in Serum Samples of Preterm Newborn Infants with Bronchopulmonary Dysplasia Using a Validated Hydride Generation System. Biological Trace Element Research, 147, 1-7.
https://doi.org/10.1007/s12011-011-9270-z
[22] Wang, Z., Li, W., Guo, Q., et al. (2018) Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BioMed Research International, 2018, Article ID: 6057589.
https://doi.org/10.1155/2018/6057589
[23] Gorgisen, G., Aydin, M., Mboma, O., et al. (2022) The Role of Insulin Receptor Substrate Proteins in Bronchopulmonary Dysplasia and Asthma: New Potential Perspectives. International Journal of Molecular Sciences, 23, Article 10113.
https://doi.org/10.3390/ijms231710113
[24] Andrea, M., Susanna, B., Francesca, N., et al. (2021) The Emerging Role of Type 2 Inflammation in Asthma. Expert Review of Clinical Immunology, 17, 63-71.
https://doi.org/10.1080/1744666X.2020.1860755
[25] Wu, W.J., Wang, S.H., Wu, C.C., et al. (2021) IL-4 and IL-13 Promote Proliferation of Mammary Epithelial Cells through STAT6 and IRS-1. International Journal of Molecular Sciences, 22, Article 12008.
https://doi.org/10.3390/ijms222112008
[26] Lambrecht, B.N., Hammad, H. and Fahy, J.V. (2019) The Cytokines of Asthma. Immunity, 50, 975-991.
https://doi.org/10.1016/j.immuni.2019.03.018
[27] Liu, Q., Gao, Y. and Ci, X. (2019) Role of Nrf2 and Its Activators in Respiratory Diseases. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 7090534.
https://doi.org/10.1155/2019/7090534
[28] McGrath-Morrow, S., Lauer, T., Yee, M., et al. (2009) Nrf2 Increases Survival and Attenuates Alveolar Growth Inhibition in Neonatal Mice Exposed to Hyperoxia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 296, L565-L573.
https://doi.org/10.1152/ajplung.90487.2008
[29] Cho, H.Y., van Houten, B., Wang, X., et al. (2012) Targeted Deletion of Nrf2 Impairs Lung Development and Oxidant Injury in Neonatal Mice. Antioxidants & Redox Signaling, 17, 1066-1082.
https://doi.org/10.1089/ars.2011.4288
[30] Zhang, X., Chu, X., Gong, X., et al. (2020) The Expression of miR-125b in Nrf2-Silenced A549 Cells Exposed to Hyperoxia and Its Relationship with Apoptosis. Journal of Cellular and Molecular Medicine, 24, 965-972.
https://doi.org/10.1111/jcmm.14808
[31] Li, N., Wang, M., Barajas, B., et al. (2013) Nrf2 Deficiency in Dendritic Cells Enhances the Adjuvant Effect of Ambient Ultrafine Particles on Allergic Sensitization. Journal of Innate Immunity, 5, 543-554.
https://doi.org/10.1159/000347060
[32] Huo, R., Tian, X., Chang, Q., et al. (2021) Targeted Inhibition of β-Catenin Alleviates Airway Inflammation and Remodeling in Asthma via Modulating the Profibrotic and Anti-Inflammatory Actions of Transforming Growth Factor-β1. Therapeutic Advances in Respiratory Disease, 15.
https://doi.org/10.1177/1753466620981858
[33] Liu, G., Philp, A.M., Corte, T., et al. (2021) Therapeutic Targets in Lung Tissue Remodelling and Fibrosis. Pharmacology & Therapeutics, 225, Article 107839.
https://doi.org/10.1016/j.pharmthera.2021.107839
[34] Xing, Y.M., Li, P.S. and Liu, Y. (2022) 1,25-(OH)2D3 Participates and Modulates Airway Remodeling by Reducing MGP and TGF-β1 Expression in TNF-α-Induced Airway Smooth Muscle Cells. Advances in Clinical and Experimental Medicine, 31, 151-155.
https://doi.org/10.17219/acem/142067
[35] Kunzmann, S., Ottensmeier, B., Speer, C.P., et al. (2018) Effect of Progesterone on Smad Signaling and TGF-β/Smad-Regulated Genes in Lung Epithelial Cells. PLOS ONE, 13, e0200661.
https://doi.org/10.1371/journal.pone.0200661
[36] Aly, H., Mansi, Y., Ez El Din, Z., et al. (2019) Mesenchymal Stromal Cells and TGF-β1 in Tracheal Aspirate of Premature Infants: Early Predictors for Bronchopulmonary Dysplasia? Journal of Perinatal Medicine, 47, 470-477.
https://doi.org/10.1515/jpm-2018-0305
[37] Rai, N. and D’Armiento, J. (2022) Wingless/Integrase-1 Signaling in Allergic Asthma and Pediatric Lung Diseases. Current Opinion in Pediatrics, 34, 572-579.
https://doi.org/10.1097/MOP.0000000000001173
[38] Sharma, S., Tantisira, K., Carey, V., et al. (2010) A Role for Wnt Signaling Genes in the Pathogenesis of Impaired Lung Function in Asthma. American Journal of Respiratory and Critical Care Medicine, 181, 328-336.
https://doi.org/10.1164/rccm.200907-1009OC
[39] Li, J., Yu, K.H., Oehlert, J., et al. (2015) Exome Sequencing of Neonatal Blood Spots and the Identification of Genes Implicated in Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 192, 589-596.
https://doi.org/10.1164/rccm.201501-0168OC
[40] Riccetti, M.R., Ushakumary, M.G., Waltamath, M., et al. (2022) Maladaptive Functional Changes in Alveolar Fibroblasts due to Perinatal Hyperoxia Impair Epithelial Differentiation. JCI Insight, 7, e152404.
https://doi.org/10.1172/jci.insight.152404
[41] Malloy, K.W. and Austin, E.D. (2021) Pulmonary Hypertension in the Child with Bronchopulmonary Dysplasia. Pediatric Pulmonology, 56, 3546-3556.
https://doi.org/10.1002/ppul.25602
[42] Hansmann, G., Sallmon, H., Roehr, C.C., et al. (2021) European Pediatric Pulmonary Vascular Disease Network (EPPVDN). Pulmonary Hypertension in Bronchopulmonary Dysplasia. Pediatric Research, 89, 446-455.
https://doi.org/10.1038/s41390-020-0993-4