儿童哮喘与呼吸道病毒感染相关性研究进展
Research Progress on the Correlation between Children Asthma and Respiratory Viral Infections
DOI: 10.12677/acm.2024.1441162, PDF, HTML, XML, 下载: 39  浏览: 60  科研立项经费支持
作者: 李夙凌, 赵改杰:延安大学,陕西 延安;李元霞*:延安大学附属医院儿科,陕西 延安
关键词: 儿童支气管哮喘呼吸道病毒感染Children Bronchial Asthma Respiratory Viral Infections
摘要: 哮喘是一种在儿童中普遍存在的慢性炎症性呼吸道疾病,其核心特征包括气道的高度反应性和可逆的气流阻塞。特别地,呼吸道病毒感染,尤其是鼻病毒(Rhinovirus, RV)和呼吸道合胞病毒(Respiratory Syncytial Virus, RSV)的感染,构成了引发儿童哮喘发作的主要诱因之一。这些病毒感染不仅能够引起已患哮喘的儿童出现发作,还可能与哮喘的发生机制紧密相关。本篇综述的目的在于深入探讨呼吸道病毒感染与儿童哮喘之间的关联性,通过分析当前的研究进展,旨在为哮喘的预防和治疗提出新的见解和策略。
Abstract: Asthma is a prevalent chronic inflammatory respiratory disease in children, characterized by high airway reactivity and reversible airflow obstruction. Notably, respiratory viral infections, particularly infections with Rhinovirus (RV) and Respiratory Syncytial Virus (RSV), constitute one of the primary triggers for asthma exacerbations in children. These viral infections can not only provoke episodes in children with existing asthma but may also be closely linked to the pathogenesis of asthma. The purpose of this review is to delve into the association between respiratory viral infections and children asthma. By analyzing current research progress, this review aims to propose new insights and strategies for the prevention and treatment of asthma.
文章引用:李夙凌, 赵改杰, 李元霞. 儿童哮喘与呼吸道病毒感染相关性研究进展[J]. 临床医学进展, 2024, 14(4): 1318-1325. https://doi.org/10.12677/acm.2024.1441162

1. 引言

随着PCR技术的进步,过去二十年里病毒性呼吸道感染的诊断水平显著提升 [1] [2] 。有学者对多种呼吸道病毒及其亚型进行了研究并在呼吸道样本中还检测到了一些新的病毒 [3] 。越来越多的证据表明,生命早期的呼吸道病毒感染与发生喘息和哮喘的风险增加有关 [4] [5] [6] 。本篇综述旨在探讨儿童哮喘与呼吸道病毒感染之间的关联性,理解这些相互作用的机制和相关风险因素,不仅能够为哮喘的病理机制提供新的洞察,还有助于开发预防和治疗哮喘的新方法。

2. 呼吸道病毒感染概述

哮喘是世界上最常见的呼吸道疾病之一,病毒性呼吸道感染是哮喘加重最常见的诱因之一 [7] 。这些病毒感染不仅导致轻微的上呼吸道感染,如普通感冒,也可能导致下呼吸道感染,如支气管炎和肺炎,严重时甚至威胁生命 [8] 。主要参与哮喘发生和加重的呼吸道病毒包括鼻病毒(Rhinovirus, RV)、呼吸道合胞病毒(Respiratory Syncytial Virus, RSV)、流感病毒、副流感病毒、腺病毒和冠状病毒 [9] [10] 。其中,RV和RSV是两种最为常见的病原体 [11] 。

RV是导致普通感冒的主要病原体之一 [12] ,其显著特点在于品种繁多,能有效地规避宿主的免疫反应。RV感染一般引起轻度的上呼吸道症状,包括鼻塞、咳嗽、喉咙疼痛和轻微发烧。然而,在特定的易感人群中,特别是在儿童中,RV感染有可能触发哮喘发作或加剧现有的哮喘症状 [13] 。RSV是导致婴幼儿及老年人严重下呼吸道感染的主要原因之一。RSV感染的典型表现包括严重的呼吸困难、持续性咳嗽、喘息及发热。特别是对于那些患有基础肺部疾病或免疫系统功能不全的儿童 [14] ,RSV感染可能导致其住院治疗,甚至可能危及生命 [15] 。因此,对于这类高风险群体,预防和及时诊治RSV感染显得尤为重要。

流行病学研究表明,呼吸道病毒感染呈现出明显的季节性特点,一般在冬季和早春期间最为普遍 [16] 。此外,儿童由于免疫系统尚未完全成熟,对呼吸道病毒的易感性较高,一旦感染,表现出的症状往往比成人更为严重。呼吸道病毒主要通过飞沫传播和接触传播方式,使得在人群密集的场所,比如学校和托儿所,其传播速度显著加快 [17] 。尤其是对于儿童哮喘患者,了解和控制呼吸道病毒感染对于减少哮喘发作和改善生活质量具有重要意义。

3. 呼吸道病毒感染与儿童哮喘的相关性

3.1. RV与哮喘

Chanakarn等人的研究表明不同病毒系的共循环可能导致病毒重组和病毒的遗传多样性 [18] ,使得人体难以形成持久免疫,因此反复感染的情况较为常见。研究指出,RV感染能够激活Th2型细胞因子,而这些因子在加剧气道炎症中起着关键作用 [19] 。气道炎症是哮喘病理过程的核心,因此这种激活不仅加剧了现有的哮喘症状,而且长期RV感染还可能导致气道结构的改变,从而进一步恶化哮喘状况 [20] 。此外,Gang Chen等人研究还发现哮喘患者中RV的清除速度较慢 [21] ,这可能与哮喘患者特有的免疫反应模式有关。与此同时,遗传因素在RV感染与哮喘之间的关系中也起到了重要作用。Charu Rajput等人发现某些基因变异可能使个体对RV感染的反应性增加,从而增加哮喘发作的风险 [22] 。上述研究结果表明深入探索RV与哮喘之间相互作用机制的重要性,这不仅有助于理解哮喘的病理过程,也为开发针对RV的预防和治疗策略提供了重要的理论支持。

3.2. RSV与哮喘

RSV是导致婴幼儿及老年人下呼吸道感染的主要病原体之一。该病毒通过飞沫和接触传播的方式,尤其在冬季和春季高发,展现出了高度传染性和反复感染的特点。有研究表明RSV感染每年导致数百万人住院 [23] ,几乎所有儿童在2岁时感染RSV,在一生中反复再感染 [24] 。RSV感染与哮喘之间的关联机制相当复杂,其中RSV主要感染呼吸道上皮细胞,它们是趋化因子和细胞因子的有效来源,对炎症细胞的募集和激活非常重要 [25] 。也有学者发现RSV通过激活酪氨酸激酶受体EGFR来诱导气道上皮细胞炎症 [26] 。Smallcombe等的研究证明RSV感染会导致气道上皮屏障功能障碍和结构破坏 [27] ,因此长期或严重的RSV感染可能导致气道结构的改变,例如气道平滑肌增厚,从而可以加剧气道狭窄程度,进一步恶化哮喘症状。因此深入了解RSV与哮喘之间的相互作用,有助于制定更有效的预防措施和治疗方案,从而减少RSV感染的发生率和降低哮喘发作的风险。

3.3. 其他呼吸道病毒与哮喘

其他呼吸道病毒如流感病毒、腺病毒和冠状病毒等,也与哮喘的发展和急性加重有着密切联系。有研究表明,这些病毒感染能够触发和加剧哮喘患者的症状 [28] ,原因包括病毒感染诱发的气道炎症、气道高反应性以及免疫系统的异常反应。近年来,流感病毒感染已被证实可以加重哮喘患者的症状,并增加急性发作的风险 [29] 。此外,腺病毒感染,尤其是在儿童中,与哮喘的长期发展有关 [30] ,并推测其可能通过影响气道的免疫调节和重塑机制发挥作用。最新的研究发现哮喘和状态哮喘都与冠状病毒相关语体中的细胞因子的关联模式而高度相关 [31] ,Wang Chun Kwok等人表示进一步研究哮喘和长冠状病毒的潜在致病机制以及哮喘控制的恶化是值得的,因为这可能导致可能的长冠状病毒的预防措施和哮喘控制的恶化的发展 [32] 。尽管这些病毒的具体作用机制仍在研究之中,但已有证据表明,COVID-19可能通过激发过度的炎症反应和免疫失调,对哮喘患者构成额外的风险 [33] 。

4. 影响因素分析

4.1. 遗传因素

哮喘症状的加重和哮喘的严重程度已被证明与暴露于各种环境触发因素的遗传易感性有关 [34] 。特定的基因变异,如与免疫调节、炎症反应和气道重塑相关的基因,可能决定了个体对呼吸道病毒感染的敏感性和哮喘发病的风险。证据表明,遗传和环境因素决定了RSV和RV感染的免疫反应类型,这有可能发展成持续的哮喘症状 [35] 。这些遗传因素通过影响病毒感染后的免疫应答和气道炎症反应,间接影响哮喘的发展。

4.2. 环境因素

病毒暴露、空气污染、二手烟暴露以及早期生活中的卫生条件等环境因素也对儿童哮喘的发展产生重要影响。此外,霍尔特等人提供了生命早期病毒感染触发哮喘发展的证据,并表示可能通过改变免疫系统的发育轨迹,增加哮喘的风险 [36] 。此外,Suh-Young Lee等人发现空气污染和二手烟等环境因素可能与病毒感染相互作用,加剧气道炎症,从而增加哮喘的敏感性和严重程度 [37] 。

4.3. 免疫反应特征

儿童的免疫系统相对于成人而言,还未完全成熟,因此儿童对呼吸道病毒的反应特征与成人存在一定差异。呼吸道病毒感染通常会引发一系列复杂的免疫反应,这其中包括Th1和Th2型免疫反应的激活 [38] 。Th2型免疫反应的偏向不仅加剧了哮喘的症状 [39] ,而且可能在哮喘的慢性化过程中起到了关键作用 [40] 。Th2型免疫反应可以促使体内产生大量的特定细胞因子,如白细胞介素(IL)-4、IL-5和IL-13等,既往研究表明这些细胞因子在气道炎症和气道重塑中扮演着重要角色 [20] 。在儿童这个免疫系统尚未成熟的群体中,上述免疫反应特征反应不仅增加了哮喘发作的风险,还可能导致哮喘从一个急性的、可逆的状态转变为更加慢性的、难以逆转的病症。因此,理解儿童免疫系统的特点和呼吸道病毒感染如何影响这一群体的哮喘发展,对于制定针对性的预防和治疗策略至关重要。这不仅有助于减轻儿童哮喘的症状,还可能在一定程度上防止哮喘的慢性化,从而改善患儿的生活质量。

5. 预防与治疗策略

5.1. 疫苗的开发与应用

疫苗接种是预防病毒感染最有效的方法之一 [41] ,它通过激活人体的免疫系统,使之对特定病毒产生抗体,从而减少感染的机会和降低感染后的严重程度。对于哮喘患者来说,既往临床研究表明病毒感染往往会加剧哮喘症状,甚至诱发急性发作 [42] 。尽管呼吸道合胞病毒是儿童下呼吸道感染的主要原因,但以往由于人们对RSV疫苗接种后能够预防感染和RSV疾病进展的强免疫应答仍然知之甚少,从某种程度这上限制了呼吸道合胞病毒疫苗的批准 [43] 。但是近年来,随着医学研究的不断深入,RSV疫苗的研发也仍在积极进行中。总而言之,疫苗通过激活免疫系统对特定病毒产生抗体,从而减少感染的机会和严重程度,对于预防哮喘发作具有重要意义。

5.2. 抗病毒治疗

抗病毒药物是目前临床中治疗病毒感染的有效方法之一,它们通过抑制病毒的复制来减轻症状,防止病情恶化 [44] 。在哮喘儿童中,由于病毒感染可能迅速加剧哮喘症状,导致急性发作,因此及时使用抗病毒药物尤为重要。此外,对于哮喘儿童,及时使用抗病毒药物不仅可以帮助控制病毒感染,减轻流感症状,还可以减少因病毒感染引起的哮喘急性发作的风险,避免病情加重,从而减少需要住院治疗的可能性,提高治疗效果。但需要注意的是,抗病毒药物的使用应遵循医生的指导,因为不恰当的使用可能导致药物耐药性的发展或其他不良反应。因此,在使用抗病毒药物治疗哮喘儿童的病毒感染时,家长和医生需要仔细评估病情,及时作出合理的治疗决策。

5.3. 免疫调节治疗

免疫调节治疗是近年来一种新型的哮喘治疗方法,它通过调整免疫系统的反应来减轻哮喘症状和控制疾病的进展,特别适用于对传统治疗反应不佳的重症哮喘患者。这种治疗方法利用生物制剂,如针对IgE的奥马珠单抗和针对IL-5的美罗华、雷司伦和本珠单抗等单克隆抗体,通过特异性地靶向体内的特定免疫介质物,减少气道炎症和改善哮喘控制 [45] 。这些生物制剂实现了针对性治疗,减少了药物副作用,从而显著改善了患者的生活质量。尽管目前生物制剂的价格较高,且需要通过注射或静脉输液给药,但它们为重症哮喘患者提供了新的治疗希望。此外,临床治疗方案的选择应根据患者的具体情况并结合医生的专业建议进行,从而可以确保治疗的安全性和有效性。

5.4. 环境干预和生活方式调整

减少病毒暴露的风险和加强身体抵抗力对于预防哮喘发作至关重要。环境干预措施,如提高居住环境的卫生条件、减少空气污染和烟草烟雾暴露,能够显著降低哮喘发作的几率 [46] 。不仅如此,生活方式的调整也扮演着一个不可忽视的角色。保持良好的个人卫生习惯,如勤洗手、避免与生病的人密切接触,定期进行体育锻炼以增强体质,以及维持健康饮食,都能有效增强免疫系统,从而减少因病毒感染导致的哮喘发作风险。此外,教育家长和儿童关于如何预防病毒感染的知识同样重要 [47] 。通过提高对病毒传播方式的认识,采取适当的预防措施,家长和儿童可以更好地保护自己,进而使得哮喘儿童减少哮喘发作的风险。

6. 展望与小结

近年来,对儿童哮喘与呼吸道病毒感染之间关系的研究取得了显著进展,深化了我们对这一复杂交互作用过程的理解。通过运用分子生物学、免疫学和遗传学等方法,研究人员正在逐步揭示病毒感染如何通过影响宿主的免疫反应和遗传表达来增加哮喘的风险或加剧症状。这些发现不仅丰富了我们对哮喘病理机制的认识,也为识别新的治疗靶点提供了可能。此外,随着医疗技术的不断进步,长期队列研究和大数据分析成为了研究这一领域的重要工具。而针对呼吸道病毒的新型疫苗和治疗策略的开发,也为预防和治疗儿童哮喘开辟了新途径。综上所述,未来将有更多的研究团队继续深入探索病毒与宿主相互作用的机制,利用先进的数据分析技术,发展更有效的预防和治疗策略,为儿童哮喘患者提供更加精准和有效的医疗服务。

基金项目

延安大学研究生教育创新计划项目(YCX2023121)、延安大学研究生教育创新计划项目(YCX2023123)。

NOTES

*通讯作者。

参考文献

[1] Sundell, N., Andersson, L.M., Brittain-Long, R., Sundvall, P.D., Alsiö, Å., Lindh, M., Gustavsson, L. and Westin, J. (2019) PCR Detection of Respiratory Pathogens in Asymptomatic and Symptomatic Adults. Journal of Clinical Microbiology, 57, E00716-18.
https://doi.org/10.1128/JCM.00716-18
[2] Ogunbayo, A.E., Mogotsi, M.T., Sondlane, H., Nkwadipo, K.R., Sabiu, S. and Nyaga, M.M. (2022) Pathogen Profile of Children Hospitalised with Severe Acute Respiratory Infections during COVID-19 Pandemic in the Free State Province, South Africa. International Journal of Environmental Research and Public Health, 19, Article No. 10418.
https://doi.org/10.3390/ijerph191610418
[3] Zhao, H., Xu, W., Wang, L., Zhu, Y., Wang, X., Liu, Y., Ai, J., Feng, Q., Deng, L., Sun, Y., Li, C., Jin, R., Shang, Y., Gao, H., Qian, S., Xu, L. and Xie, Z. (2022) WU Polyomavirus Infection in Children with Acute Lower Respiratory Tract Infections in China, 2017 to 2019: Case Reports and Multicentre Epidemiological Survey. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 835946.
https://doi.org/10.3389/fcimb.2021.835946
[4] Hussain, S.A., Mejias, A., Ramilo, O., Peeples, M.E. and Grayson, M.H. (2019) Post-Viral Atopic Airway Disease: Pathogenesis and Potential Avenues for Intervention. Expert Review of Clinical Immunology, 15, 49-58.
https://doi.org/10.1080/1744666X.2019.1541737
[5] Ptaschinski, C. and Lukacs, N.W. (2019) Early Life Respiratory Syncytial Virus Infection and Asthmatic Responses. Immunology and Allergy Clinics of North America, 39, 309-319.
https://doi.org/10.1016/j.iac.2019.03.002
[6] Wark, P.A., Johnston, S.L., Moric, I., Simpson, J.L., Hensley, M.J. and Gibson, P.G. (2002) Neutrophil Degranulation and Cell Lysis Is Associated with Clinical Severity in Virus-Induced Asthma. European Respiratory Journal, 19, 68-75.
https://doi.org/10.1183/09031936.02.00226302
[7] Chang, A.B., Clark, R., Acworth, J.P., Petsky, H.L. and Sloots, T.P. (2009) The Impact of Viral Respiratory Infection on the Severity and Recovery from an Asthma Exacerbation. The Pediatric Infectious Disease Journal, 28, 290-294.
https://doi.org/10.1097/INF.0b013e31819067b1
[8] Tang, X., Dai, G., Wang, T., Sun, H., Jiang, W., Chen, Z. and Yan, Y. (2023) Comparison of the Clinical Features of Human Bocavirus and Metapneumovirus Lower Respiratory Tract Infections in Hospitalized Children in Suzhou, China. Frontiers in Pediatrics, 10, Article ID: 1074484.
https://doi.org/10.3389/fped.2022.1074484
[9] Busse, W.W., Lemanske, R.F. and Gern, J.E. (2010) Role of Viral Respiratory Infections in Asthma and Asthma Exacerbations. The Lancet, 376, 826-834.
https://doi.org/10.1016/S0140-6736(10)61380-3
[10] Adeli, M., El-Shareif, T. and Hendaus, M.A. (2019) Asthma Exacerbation Related to Viral Infections: An up to Date Summary. Journal of Family Medicine and Primary Care, 8, 2753-2759.
https://doi.org/10.4103/jfmpc.jfmpc_86_19
[11] Jartti, T., Smits, H.H., Bønnelykke, K., Bircan, O., Elenius, V., Konradsen, J.R., Maggina, P., Makrinioti, H., Stokholm, J., Hedlin, G., Papadopoulos, N., Ruszczynski, M., Ryczaj, K., Schaub, B., Schwarze, J., Skevaki, C., Stenberg-Hammar, K., Feleszko, W. and EAACI Task Force on Clinical Practice Recommendations on Preschool Wheeze (2019) Bronchiolitis Needs a Revisit: Distinguishing between Virus Entities and Their Treatments. Allergy, 74, 40-52.
https://doi.org/10.1111/all.13624
[12] Niespodziana, K., Cabauatan, C.R., Pazderova, P., Vacal, P.C., Wortmann, J., Keller, W., Errhalt, P. and Valenta, R. (2022) Identification of Epitopes on Rhinovirus 89 Capsid Proteins Capable of Inducing Neutralizing Antibodies. International Journal of Molecular Sciences, 23, Article No. 5113.
https://doi.org/10.3390/ijms23095113
[13] Kumar, K., Singanayagam, A. and Johnston, S.L. (2020) Respiratory Virus Infections in Asthma: Research Developments and Therapeutic Advances. Acta Medica Academica, 49, 130-143.
https://doi.org/10.5644/ama2006-124.292
[14] Romano, C.D., Finelli, L., Lewis, S., Williams, V., Martin, E., Phillips, M., Saretsky, T.L. and Norquist, J. (2023) Assessing the Patient Experience of Respiratory Syncytial Virus Infection: Development of a Patient-Reported Outcome Measure. Health and Quality of Life Outcomes, 21, Article No. 20.
https://doi.org/10.1186/s12955-022-02066-x
[15] Letafati, A., Aghamirmohammadali, F.S., Rahimi-Foroushani, A., Hasani, S.A., Mokhtari-Azad, T. and Yavarian, J. (2022) No Human Respiratory Syncytial Virus but SARS-CoV-2 Found in Children under 5 Years Old Referred to Children Medical Center in 2021, Tehran, Iran. Journal of Medical Virology, 94, 3096-3100.
https://doi.org/10.1002/jmv.27685
[16] Cardenas, J., Pringle, C., Filipp, S.L., Gurka, M.J., Ryan, K.A. and Avery, K.L. (2022) Changes in Critical Bronchiolitis after COVID-19 Lockdown. Cureus, 14, E25064.
https://doi.org/10.7759/cureus.25064
[17] Tsang, T.K., Huang, X., Guo, Y., Lau, E.H.Y., Cowling, B.J. and Ip, D.K.M. (2023) Monitoring School Absenteeism for Influenza-Like Illness Surveillance: Systematic Review and Meta-Analysis. JMIR Public Health and Surveillance, 9, E41329.
https://doi.org/10.2196/41329
[18] Nasamran, C., Janetanakit, T., Chiyawong, S., Boonyapisitsopa, S., Bunpapong, N., Prakairungnamthip, D., Thontiravong, A. and Amonsin, A. (2020) Persistence of Pdm2009-H1N1 Internal Genes of Swine Influenza in Pigs, Thailand. Scientific Reports, 10, Article No. 19847.
https://doi.org/10.1038/s41598-020-76771-2
[19] 任志红, 赵璇. 呼吸道病毒感染对哮喘患儿Th1/Th2细胞因子的影响[J]. 西南国防医药, 2018, 28(3): 234-236.
[20] Hong, J.H. and Lee, Y.C. (2022) Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung Inflammation in Vitro. Life (Basel), 12, Article No. 857.
https://doi.org/10.3390/life12060857
[21] Chen, G., Korfhagen, T.R., Karp, C.L., Impey, S., Xu, Y., Randell, S.H., Kitzmiller, J., Maeda, Y., Haitchi, H.M., Sridharan, A., Senft, A.P. and Whitsett, J.A. (2014) Foxa3 Induces Goblet Cell Metaplasia and Inhibits Innate Antiviral Immunity. American Journal of Respiratory and Critical Care Medicine, 189, 301-313.
https://doi.org/10.1164/rccm.201306-1181OC
[22] Rajput, C., Walsh, M.P., Eder, B.N., Metitiri, E.E., Popova, A.P. and Hershenson, M.B. (2018) Rhinovirus Infection Induces Distinct Transcriptome Profiles in Polarized Human Macrophages. Physiological Genomics, 50, 299-312.
https://doi.org/10.1152/physiolgenomics.00122.2017
[23] Nair, H., Nokes, D.J., Gessner, B.D., Dherani, M., Madhi, S.A., Singleton, R.J., O’Brien, K.L., Roca, A., Wright, P.F., Bruce, N., Chandran, A., Theodoratou, E., Sutanto, A., Sedyaningsih, E.R., Ngama, M., Munywoki, P.K., Kartasasmita, C., Simões, E.A., Rudan, I., Weber, M.W. and Campbell, H. (2010) Global Burden of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Young Children: A Systematic Review and Meta-Analysis. The Lancet, 375, 1545-1555.
https://doi.org/10.1016/S0140-6736(10)60206-1
[24] Hall, C.B. (2012) The Burgeoning Burden of Respiratory Syncytial Virus among Children. Infectious DisordersDrug Targets, 12, 92-97.
https://doi.org/10.2174/187152612800100099
[25] Bleakley, A.S., Licciardi, P.V. and Binks, M.J. (2021) Vitamin D Modulation of the Innate Immune Response to Paediatric Respiratory Pathogens Associated with Acute Lower Respiratory Infections. Nutrients, 13, Article No. 276.
https://doi.org/10.3390/nu13010276
[26] Chi, L., Shan, Y. and Cui, Z. (2022) N-Acetyl-L-Cysteine Protects Airway Epithelial Cells during Respiratory Syncytial Virus Infection against Mucin Synthesis, Oxidative Stress, and Inflammatory Response and Inhibits HSPA6 Expression. Analytical Cellular Pathology (Amst), 2022, Article ID: 4846336.
https://doi.org/10.1155/2022/4846336
[27] Smallcombe, C.C., Linfield, D.T., Harford, T.J., Bokun, V., Ivanov, A.I., Piedimonte, G. and Rezaee, F. (2019) Disruption of the Airway Epithelial Barrier in a Murine Model of Respiratory Syncytial Virus Infection. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 316, L358-L368.
https://doi.org/10.1152/ajplung.00345.2018
[28] Papadopoulos, N.G., Christodoulou, I., Rohde, G., Agache, I., Almqvist, C., Bruno, A., Bonini, S., Bont, L., Bossios, A., Bousquet, J., Braido, F., Brusselle, G., Canonica, G.W., Carlsen, K.H., Chanez, P., Fokkens, W.J., Garcia-Garcia, M., Gjomarkaj, M., Haahtela, T., Holgate, S.T., Johnston, S.L., Konstantinou, G., Kowalski, M., Lewandowska-Polak, A., Lødrup-Carlsen, K., Mäkelä, M., Malkusova, I., Mullol, J., Nieto, A., Eller, E., Ozdemir, C., Panzner, P., Popov, T., Psarras, S., Roumpedaki, E., Rukhadze, M., Stipic-Markovic, A., Todo Bom, A., Toskala, E., Van Cauwenberge, P., Van Drunen, C., Watelet, J.B., Xatzipsalti, M., Xepapadaki, P. and Zuberbier, T. (2011) Viruses and Bacteria in Acute Asthma Exacerbations—A GA2LEN-DARE Systematic Review. Allergy, 66, 458-468.
https://doi.org/10.1111/j.1398-9995.2010.02505.x
[29] Furuya, Y., Furuya, A.K., Roberts, S., Sanfilippo, A.M., Salmon, S.L. and Metzger, D.W. (2015) Prevention of Influenza Virus-Induced Immunopathology by TGF-β Produced during Allergic Asthma. PLOS Pathogens, 11, e1005180.
https://doi.org/10.1371/journal.ppat.1005180
[30] Shi, T., Balsells, E., Wastnedge, E., Singleton, R., Rasmussen, Z.A., Zar, H.J., Rath, B.A., Madhi, S.A., Campbell, S., Vaccari, L.C., Bulkow, L.R., Thomas, E.D., Barnett, W., Hoppe, C., Campbell, H. and Nair, H. (2015) Risk Factors for Respiratory Syncytial Virus Associated with Acute Lower Respiratory Infection in Children under Five Years: Systematic Review and Meta-Analysis. Journal of Global Health, 5, Article ID: 020416.
https://doi.org/10.7189/jogh.05.020416
[31] Geifman, N. and Whetton, A.D. (2020) A Consideration of Publication-Derived Immune-Related Associations in Coronavirus and Related Lung Damaging Diseases. Journal of Translational Medicine, 18, Article No. 297.
https://doi.org/10.1186/s12967-020-02472-z
[32] Kwok, W.C., Tam, T.C.C., Lam, D.C.L., Leung, J.K.C., Chan, K.P.F., Chan, S.K.S., Chiang, K.Y., Ip, M.S.M. and Ho, J.C.M. (2023) Worsening of Asthma Control after Recovery from Mild to Moderate COVID-19 in Patients from Hong Kong. Respiratory Research, 24, Article No. 53.
https://doi.org/10.1186/s12931-023-02363-z
[33] Novak, N. and Cabanillas, B. (2020) Viruses and Asthma: The Role of Common Respiratory Viruses in Asthma and Its Potential Meaning for SARS-CoV-2. Immunology, 161, 83-93.
https://doi.org/10.1111/imm.13240
[34] Wilhelm, M., Meng, Y.Y., Rull, R.P., English, P., Balmes, J. and Ritz, B. (2008) Environmental Public Health Tracking of Childhood Asthma Using California Health Interview Survey, Traffic, and Outdoor Air Pollution Data. Environmental Health Perspectives, 116, 1254-1260.
https://doi.org/10.1289/ehp.10945
[35] Darveaux, J.I. and Lemanske, R.F. (2014) Infection-Related Asthma. The Journal of Allergy and Clinical Immunology: In Practice, 2, 658-663.
https://doi.org/10.1016/j.jaip.2014.09.011
[36] Wang, J.Y. (2015) The Sticky Relationship between Allergies and Infections. Asia Pacific Allergy, 5, 133-135.
https://doi.org/10.5415/apallergy.2015.5.3.133
[37] Lee, S.Y., Chang, Y.S. and Cho, S.H. (2013) Allergic Diseases and Air Pollution. Asia Pacific Allergy, 3, 145-154.
https://doi.org/10.5415/apallergy.2013.3.3.145
[38] Piskareva, O., Lackington, W., Lemass, D., Hendrick, C., Doolan, P. and Barron, N. (2011) The Human L1 Element: A Potential Biomarker in Cancer Prognosis, Current Status and Future Directions. Current Molecular Medicine, 11, 286-303.
https://doi.org/10.2174/156652411795677954
[39] Zhang, K., Zhu, D., Kepley, C., Terada, T. and Saxon, A. (2007) Chimeric Human Fcgamma-Allergen Fusion Proteins in the Prevention of Allergy. Immunology and Allergy Clinics of North America, 27, 93-103.
https://doi.org/10.1016/j.iac.2006.11.002
[40] Lee, C.C., Wang, C.C., Huang, H.M., Lin, C.L., Leu, S.J. and Lee, Y.L. (2015) Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 678487.
https://doi.org/10.1155/2015/678487
[41] Sadeghsoltani, F., Mohammadzadeh, I., Safari, M.M., Hassanpour, P., Izadpanah, M., Qujeq, D., Moein, S. and Vaghari-Tabari, M. (2022) Zinc and Respiratory Viral Infections: Important Trace Element in Anti-Viral Response and Immune Regulation. Biological Trace Element Research, 200, 2556-2571.
https://doi.org/10.1007/s12011-021-02859-z
[42] Chankaew, K., Sinitkul, R., Manuyakorn, W., Roekworachai, K. and Kamalaporn, H. (2022) Spatial Estimation of PM2.5 Exposure and Its Association with Asthma Exacerbation: A Prospective Study in Thai Children. Annals of Global Health, 88, Article No. 15.
https://doi.org/10.5334/aogh.3513
[43] Kim, K.H., Lee, Y.T., Hwang, H.S., Kwon, Y.M., Kim, M.C., Ko, E.J., Lee, J.S., Lee, Y. and Kang, S.M. (2015) Virus-Like Particle Vaccine Containing the F Protein of Respiratory Syncytial Virus Confers Protection without Pulmonary Disease by Modulating Specific Subsets of Dendritic Cells and Effector T Cells. Journal of Virology, 89, 11692-11705.
https://doi.org/10.1128/JVI.02018-15
[44] Canini, L. and Perelson, A.S. (2014) Viral Kinetic Modeling: State of the Art. Journal of Pharmacokinetics and Pharmacodynamics, 41, 431-443.
https://doi.org/10.1007/s10928-014-9363-3
[45] Gragnaniello, V., Deodato, F., Gasperini, S., Donati, M.A., Canessa, C., Fecarotta, S., Pascarella, A., Spadaro, G., Concolino, D., Burlina, A., Parenti, G., Strisciuglio, P., Fiumara, A. and Casa, R.D. (2022) Immune Responses to Alglucosidase in Infantile Pompe Disease: Recommendations from an Italian Pediatric Expert Panel. Italian Journal of Pediatrics, 48, Article No. 41.
https://doi.org/10.1186/s13052-022-01219-4
[46] Kanchongkittiphon, W., Mendell, M.J., Gaffin, J.M., Wang, G. and Phipatanakul, W. (2015) Indoor Environmental Exposures and Exacerbation of Asthma: An Update to the 2000 Review by the Institute of Medicine. Environmental Health Perspectives, 123, 6-20.
https://doi.org/10.1289/ehp.1307922
[47] Baek, J., Huang, K., Conner, L., Tapangan, N., Xu, X. and Carrillo, G. (2019) Effects of the Home-Based Educational Intervention on Health Outcomes among Primarily Hispanic Children with Asthma: A Quasi-Experimental Study. BMC Public Health, 19, Article No. 912.
https://doi.org/10.1186/s12889-019-7272-5