糖皮质激素诱导股骨头坏死发病机制的研究进展
Research Progress on the Pathogenesis of Glucocorticoid-Induced Osteonecrosis of the Femoral Head
DOI: 10.12677/acm.2024.1441146, PDF, HTML, XML, 下载: 31  浏览: 52 
作者: 葛建勋, 孙 水*:山东大学,山东省立医院关节外科,山东 济南
关键词: 糖皮质激素股骨头坏死发病机制综述Glucocorticoids Osteonecrosis of the Femoral Head Pathogenesis Review
摘要: 糖皮质激素作为治疗炎症和免疫性疾病的有效药物被广泛应用,但长期使用可能会导致许多严重的副作用,其中包括股骨头坏死。本文回顾了近年来在糖皮质激素诱导股骨头坏死发病机制方面取得的研究进展。研究发现,糖皮质激素通过增加活性氧产生和氧化应激、损伤内皮细胞和凝血功能、调节脂质代谢、影响细胞凋亡和自噬以及干扰非编码RNA的调控等途径参与股骨头坏死的发生发展。
Abstract: Glucocorticoids are widely used as effective medications for the treatment of inflammatory and immune disorders, but prolonged use can lead to many serious side effects, including osteonecrosis of the femoral head. This article reviews the research progress made in recent years in the pathogenesis of glucocorticoid-induced osteonecrosis of the femoral head. It was found that glucocorticoids are involved in the development of osteonecrosis of the femoral head by increasing reactive oxygen species production and oxidative stress, damaging endothelial cells and coagulation, regulating lipid metabolism, affecting apoptosis and autophagy, as well as interfering with the regulation of non-coding RNAs.
文章引用:葛建勋, 孙水. 糖皮质激素诱导股骨头坏死发病机制的研究进展[J]. 临床医学进展, 2024, 14(4): 1218-1223. https://doi.org/10.12677/acm.2024.1441146

1. 引言

股骨头坏死(Osteonecrosis of the Femoral Head, ONFH)是一种常见的骨科疾病,在骨组织因缺血逐渐坏死的过程中,股骨头结构受损、塌陷和变形,最终导致髋关节功能障碍 [1] 。ONFH作为一种致残率和疼痛程度较高的疾病,为患者带来沉重的心理和经济负担 [2] [3] 。ONFH可分为创伤性和非创伤性两类,其中造成非创伤性ONFH最主要的原因是长期过量使用糖皮质激素(Glucocorticoids, GCs) [3] 。GCs是一类重要的内分泌激素,它们在调节许多生理过程中发挥着重要作用,包括免疫反应、炎症调节和代谢调控等 [4] 。近年来GCs在各种疾病中广泛应用,然而这也带来许多副作用,包括免疫抑制、骨质疏松、骨坏死和代谢异常等 [5] 。虽然GCs诱导的ONFH已经被广泛报道,但其发病机制仍不明确,这给疾病防治带来了困难 [6] 。因此,本文旨在综述近年来关于该疾病发病机制研究的最新进展,探讨研究的现状和前景,为进一步的临床治疗提供理论基础和新的思路。

2. 发病机制

2.1. 活性氧(ROS)堆积和氧化应激产生

ROS是在细胞正常生理过程中,由线粒体氧化磷酸化或其他途径产生的一系列具有高度反应性的代谢副产物 [7] [8] 。适量的ROS在细胞内具有重要的信号传递和调控作用,但当其生成过量或清除能力不足时,则会导致氧化应激状态的出现 [8] 。Jiazheng Chen等人发现生长分化因子15 (GDF15)可以激活雷帕霉素靶蛋白(mTOR)信号通路,上调下游包括超氧化物歧化酶(SOD)、过氧化氢酶(Cat)和谷胱甘肽过氧化物酶(Gpx)在内的抗氧化剂的表达,从而抑制地塞米松诱导的骨髓间充质干细胞(BMSCs)中ROS过量产生,改善氧化还原失衡,减缓ONFH进展 [9] 。Ning Yang等人的研究表明,GCs阻止核转录因子E2相关因子2 (Nrf2)与Kelch样ECH相关蛋白1 (Keap1)在胞质内解离,无法入核的Nrf2随后被泛素蛋白酶体降解,减少了抗氧化基因如血红素加氧酶-1 (HO-1)的转录和翻译,显著提升了BMSCs中ROS水平,引起ONFH发生 [10] 。

2.2. 内皮细胞损伤和凝血功能障碍

内皮细胞具有高度活跃的内分泌功能,通过释放生长因子和细胞因子等物质,影响包括骨细胞、成骨细胞和破骨细胞在内的细胞活性和功能代谢,从而调节骨组织的生长和修复过程 [11] [12] 。Huachen Yu等人研究发现在GCs的作用下,骨微血管内皮细胞(BMECs)的迁移能力降低,血管生成减少,凋亡增多 [13] 。而Qingyu Zhang等人提出GCs通过提高缺氧诱导因子1α (HIF-1α)和ROS的产生,并下调内皮一氧化氮合酶(eNOS)的表达,导致血管内皮细胞损伤和凋亡,包括BMECs,考虑到正常功能的骨血管网络是骨骼发育和再生的先决条件,BMEC的损伤被认为与GCs诱发的骨坏死和骨质疏松症相关 [14] 。

ONFH的特征是由于血液供应减少或中断导致股骨头细胞部分死亡,如果发生凝血功能障碍,包括血栓形成和纤溶功能低下,随之而来的是血流阻塞、静脉压升高、动脉血流受损、骨性缺氧和骨死亡 [15] 。有研究表明GCs可直接损伤内皮细胞,导致股骨头毛细血管疏松、凝血纤溶系统紊乱和血栓形成,从而严重减少松质骨的血供 [16] 。此外有学者发现服用大剂量可的松的兔出现脂肪细胞肥大和脂肪栓子,这些栓子导致股骨头软骨下骨中的血管闭塞,另一方面,软骨下血管和血窦内脂肪栓子的沉积激活了补体途径,导致免疫复合体沉积,随后激活血栓形成过程,如血管内凝血,导致ONFH [17] 。

2.3. 脂质代谢异常

脂质代谢紊乱一方面使BMSCs向脂肪细胞过度分化,阻断骨髓的血液供应,另一方面改变循环中脂质水平,在骨微血管中形成脂肪微栓子,继而导致骨内压升高,凝血–纤溶系统紊乱,最终引起骨缺血 [18] [19] 。一项血浆脂质组学分析显示GCs引起ONFH患者的脂质特征发生改变,具体表现为脂质4-氨基苯甲酸的相对丰度显著增加,从而影响白细胞介素2 (IL2)、肿瘤坏死因子(TNF)和环腺苷酸反应元件结合蛋白1 (CREB1)等多个蛋白的表达 [20] 。Yini Jiang等人发现GCs诱导大鼠股骨头中过氧化物酶体增殖物活化γ受体激动剂(PPARγ)表达增加,激活Wnt信号通路,增加下游包括低密度脂蛋白受体相关蛋白5 (LRP5)和runt相关转录因子2 (RUNX2)在内的蛋白表达,引起大鼠骨髓空骨陷窝比率、脂肪组织面积和脂肪细胞周长增加,而降脂药物普伐他汀可以逆转这一进程,从而预防ONFH [21] 。

2.4. 细胞凋亡和自噬

骨的发育和维持主要受成骨细胞的骨形成和破骨细胞的骨吸收之间的动态平衡控制,破骨细胞凋亡减少或成骨细胞凋亡增多,导致骨吸收过度,超过骨形成速度,骨重塑平衡被打破,引起骨量丢失 [22] 。Shi-Cong Tao等人研究表明在地塞米松处理的体外细胞模型和甲基强的松龙处理的体内大鼠模型中,由富血小板血浆(PRP)衍生的外泌体在内质网应激下,通过阻断CCAAT/增强子结合蛋白同源蛋白(CHOP)介导的对B细胞淋巴瘤2蛋白(Bcl2)表达的抑制,从而阻止GCs诱导的ONFH模型细胞凋亡 [23] 。Zhigang Nie等人则发现糖原合成酶激酶3β (GSK3β)基因敲除可减弱地塞米松通过线粒体途径引起的一系列效应,包括成骨细胞凋亡、线粒体跨膜电位丢失、细胞色素C (CytC)从线粒体释放到胞浆和增加细胞凋亡相关蛋白的表达 [24] 。另外,D. Jia等人提出GCs过量引起的早期、快速的骨质丢失是直接作用于破骨细胞使其凋亡的结果 [25] 。

自噬是唯一已知的细胞内降解机制,以移除功能失调的细胞器和氧化蛋白,虽然自噬可能会延长细胞在压力条件下的存活时间,但这是一个低效的过程,随着时间的推移,细胞积累代谢碎片,导致细胞和器官功能的下降 [26] 。Xin-Yuan Wang等人发现一种新型药物Pinocembrin通过抑制磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B (Akt)信号通路激活自噬,减轻了GCs诱导的骨细胞凋亡,有助于预防和治疗ONFH [27] 。Yudi Han等人则提出地塞米松可诱导成骨细胞发生自噬,并呈剂量依赖关系,自噬水平并不是随着时间的推移而继续增加,而是在48 h达到峰值,然后逐渐下降,随后成骨细胞凋亡水平逐渐上升 [28] 。自噬与细胞凋亡在骨相关细胞中的相互作用决定了GCs诱导的ONFH进程。

2.5. 非编码RNA的调控

MicroRNA(miRNA)是一种与靶基因的3’非翻译区(3’UTRs)结合的非编码单链小RNA分子,广泛参与基因表达调控。Tingting Liu等人研究结果显示中国北部人群MIR17HG和MIR155HG基因突变与激素性ONFH易感性相关,为ONFH的早期发现和预防提供新的证据 [29] 。Fei Xu等人发现GCs诱导miR-141过表达,而E2F转录因子3 (E2F3)作为miR-141调节细胞增殖的靶点被抑制表达,进一步减少了BMSCs的成骨分化,造成ONFH [30] 。另一项临床研究则提示类固醇治疗会增加人类miR-10a-5p、miR-99a-5p和miR-21-5p的血清水平 [31] 。

长链非编码RNA (lncRNA)是一类长度超过200个核苷酸的RNA分子,虽然它们不编码蛋白质,但在基因表达和细胞功能调控中具有重要作用。Shuai Xiang等人通过分离正常人和ONFH患者的BMSCs,RNA测序鉴定差异表达,证实了lncRNA RP11-154D6促进了BMSCs的成骨分化,而抑制了成脂分化,激素性ONFH患者BMSCs中存在lncRNA的异常表达 [32] 。Yadi Wu等人发现lncRNA FGD5-AS1的过表达促进了地塞米松处理的BMSCs的细胞增殖,抑制了细胞凋亡,在机制上,lncRNA FGD5-AS1可以结合miR-296-5p上调BMSCs中信号转导和转录激活因子3(STAT3)的表达,为ONFH治疗提供新思路 [33] 。

环状RNA (circRNA)是一种闭合环形的RNA分子,主要存在于细胞质中,通过调节其靶标miRNA来调节生物学功能。Xiaobo Feng等人定位了激素诱导的ONFH中BMSCs的circRNA表达谱,并确定了一个显著上调的关键circRNA,称为circHGF,其通过靶向miR-25-3p/Smad7轴抑制ONFH中BMSCs的增殖和成骨分化 [34] 。Peng Peng等人则揭示了circHIPK3下调在类固醇诱导的ONFH中的作用,通过靶向miR-7和激活Kruppel样因子4 (KLF4)/血管内皮生长因子(VEGF)信号通路抑制BMECs的凋亡,从而促进细胞的增殖、迁移和血管生成 [35] 。

3. 小结与展望

目前,GCs诱导ONFH的发病机制研究取得了越来越多的进展。从细胞水平到分子水平,人们不断深入探索GCs对骨细胞氧化应激、股骨头血供、脂质代谢和骨细胞功能等方面的影响。当前学界的共识是GCs诱导ONFH并非是单一成因,而是在多重因素共同作用下形成。然而,当前的研究仍面临挑战,对于疾病发生的确切机制在不同动物模型和临床研究中观察到的结果之间存在差异。随着综合利用基础研究和临床研究的成果,相信未来可以更好地理解和应对GCs诱导的ONFH这一挑战性疾病。

NOTES

*通讯作者。

参考文献

[1] Zhao, D., Zhang, F., Wang, B., et al. (2020) Guidelines for Clinical Diagnosis and Treatment of Osteonecrosis of the Femoral Head in Adults (2019 Version). Journal of Orthopaedic Translation, 21, 100-110.
https://doi.org/10.1016/j.jot.2019.12.004
[2] Huang, C., Qing, L., Xiao, Y., et al. (2023) Insight into Steroid-Induced ONFH: The Molecular Mechanism and Function of Epigenetic Modification in Mesenchymal Stem Cells. Biomolecules, 14, Article 4.
https://doi.org/10.3390/biom14010004
[3] Hines, J.T., Jo, W.L., Cui, Q., et al. (2021) Osteonecrosis of the Femoral Head: An Updated Review of ARCO on Pathogenesis, Staging and Treatment. Journal of Korean Medical Science, 36, e177.
https://doi.org/10.3346/jkms.2021.36.e177
[4] Scherholz, M.L., Schlesinger, N. and Androulakis, I.P. (2019) Chronopharmacology of Glucocorticoids. Advanced Drug Delivery Reviews, 151-152, 245-261.
https://doi.org/10.1016/j.addr.2019.02.004
[5] Timmermans, S., Souffriau, J. and Libert, C. (2019) A General Introduction to Glucocorticoid Biology. Frontiers in Immunology, 10, Article 1545.
https://doi.org/10.3389/fimmu.2019.01545
[6] Tan, G., Kang, P.D. and Pei, F.X. (2012) Glucocorticoids Affect the Metabolism of Bone Marrow Stromal Cells and Lead to Osteonecrosis of the Femoral Head: A Review. Chinese Medical Journal, 125, 134-139.
[7] Wang, L., Lu, Z., Zhao, J., et al. (2021) Selective Oxidative Stress Induces Dual Damage to Telomeres and Mitochondria in Human T Cells. Aging Cell, 20, e13513.
https://doi.org/10.1111/acel.13513
[8] Tolba, M.F., El-Serafi, A.T. and Omar, H.A. (2017) Caffeic Acid Phenethyl Ester Protects against Glucocorticoid-Induced Osteoporosis in Vivo: Impact on Oxidative Stress and RANKL/OPG Signals. Toxicology and Applied Pharmacology, 324, 26-35.
https://doi.org/10.1016/j.taap.2017.03.021
[9] Chen, J., Cui, Z., Wang, Y., et al. (2022) Cyclic Polypeptide D7 Protects Bone Marrow Mesenchymal Cells and Promotes Chondrogenesis during Osteonecrosis of the Femoral Head via Growth Differentiation Factor 15-Mediated Redox Signaling. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3182368.
https://doi.org/10.1155/2022/3182368
[10] Yang, N., Sun, H., Xue, Y., et al. (2021) Inhibition of MAGL Activates the Keap1/Nrf2 Pathway to Attenuate Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Clinical and Translational Medicine, 11, e447.
https://doi.org/10.1002/ctm2.447
[11] Zuo, W., Guo, W.S., Yu, H.C., et al. (2020) Role of Junction-Mediating and Regulatory Protein in the Pathogenesis of Glucocorticoid-Induced Endothelial Cell Lesions. Orthopaedic Surgery, 12, 964-973.
https://doi.org/10.1111/os.12680
[12] Salhotra, A., Shah, H.N., Levi, B., et al. (2020) Mechanisms of Bone Development and Repair. Nature Reviews Molecular Cell Biology, 21, 696-711.
https://doi.org/10.1038/s41580-020-00279-w
[13] Yu, H., Liu, P., Zuo, W. and Longaker, M.T. (2020) Decreased Angiogenic and Increased Apoptotic Activities of Bone Microvascular Endothelial Cells in Patients with Glucocorticoid-Induced Osteonecrosis of the Femoral Head. BMC Musculoskeletal Disorders, 21, Article No. 277.
https://doi.org/10.1186/s12891-020-03225-1
[14] Zhang, Q., Li, T., Li, Z., et al. (2022) Autocrine Activity of Extracellular Vesicles Induced by Icariin and Its Effectiveness in Glucocorticoid-Induced Injury of Bone Microvascular Endothelial Cells. Cells, 11, Article 1921.
https://doi.org/10.3390/cells11121921
[15] Kim, T.H., Baek, S.H., Lim, J.O., et al. (2015) Genetic Variation in the Coagulation Factor V Gene and Risk of Femoral Head Osteonecrosis. Molecular Medicine Reports, 12, 4434-4440.
https://doi.org/10.3892/mmr.2015.4000
[16] Zhang, Y., Yin, J., Ding, H., et al. (2016) Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: A Potential Mechanism for Its Protective Effects in Glucocorticoid-Induced Osteonecrosis of the Femoral Head in a Rat Model. International Journal of Biological Sciences, 12, 776-785.
https://doi.org/10.7150/ijbs.15248
[17] Chan, K.L. and Mok, C.C. (2012) Glucocorticoid-Induced Avascular Bone Necrosis: Diagnosis and Management. The Open Orthopaedics Journal, 6, 449-457.
https://doi.org/10.2174/1874325001206010449
[18] Wang, X.Y., Ma, T.L., Chen, K.N., et al. (2021) Accumulation of LDL/Ox-LDL in the Necrotic Region Participates in Osteonecrosis of the Femoral Head: A Pathological and in Vitro Study. Lipids in Health and Disease, 20, Article No. 167.
https://doi.org/10.1186/s12944-021-01601-x
[19] Yuan, L., Li, W., Wang, X., et al. (2018) The Relationship Between Genetic Polymorphisms in Apolipoprotein E (ApoE) Gene and Osteonecrosis of the Femoral Head Induced by Steroid in Chinese Han Population. Genes & Genomics, 40, 225-231.
https://doi.org/10.1007/s13258-017-0625-5
[20] Yan, Y., Wang, J., Huang, D., et al. (2022) Plasma Lipidomics Analysis Reveals Altered Lipids Signature in Patients with Osteonecrosis of the Femoral Head. Metabolomics, 18, Article No. 14.
https://doi.org/10.1007/s11306-022-01872-0
[21] Jiang, Y., Zhang, Y., Zhang, H., et al. (2014) Pravastatin Prevents Steroid-Induced Osteonecrosis in Rats by Suppressing PPARγ Expression and Activating Wnt Signaling Pathway. Experimental Biology and Medicine, 239, 347-355.
https://doi.org/10.1177/1535370213519215
[22] Jiang, Y., Zhang, Y., Chen, W., et al. (2014) Achyranthes Bidentata Extract Exerts Osteoprotective Effects on Steroid-Induced Osteonecrosis of the Femoral Head in Rats by Regulating RANKL/RANK/OPG Signaling. Journal of Translational Medicine, 12, Article No. 334.
https://doi.org/10.1186/s12967-014-0334-7
[23] Tao, S.C., Yuan, T., Rui, B.Y., et al. (2017) Exosomes Derived from Human Platelet-Rich Plasma Prevent Apoptosis Induced by Glucocorticoid-Associated Endoplasmic Reticulum Stress in Rat Osteonecrosis of the Femoral Head Via the Akt/Bad/Bcl-2 Signal Pathway. Theranostics, 7, 733-750.
https://doi.org/10.7150/thno.17450
[24] Nie, Z., Chen, S. and Peng, H. (2019) Glucocorticoid Induces Osteonecrosis of the Femoral Head in Rats through GSK3β-Mediated Osteoblast Apoptosis. Biochemical and Biophysical Research Communications, 511, 693-699.
https://doi.org/10.1016/j.bbrc.2019.02.118
[25] Jia, D., O’Brien, C.A., Stewart, S.A., et al. (2006) Glucocorticoids Act Directly on Osteoclasts to Increase Their Life Span and Reduce Bone Density. Endocrinology, 147, 5592-5599.
https://doi.org/10.1210/en.2006-0459
[26] Jia, J., Yao, W., Guan, M., et al. (2011) Glucocorticoid Dose Determines Osteocyte Cell Fate. FASEB Journal, 25, 3366-3376.
https://doi.org/10.1096/fj.11-182519
[27] Wang, X.Y., Gong, L.J., Huang, J.M., et al. (2020) Pinocembrin Alleviates Glucocorticoid-Induced Apoptosis by Activating Autophagy via Suppressing the PI3K/Akt/MTOR Pathway in Osteocytes. European Journal of Pharmacology, 880, Article ID: 173212.
https://doi.org/10.1016/j.ejphar.2020.173212
[28] Han, Y., Zhang, L., Xing, Y., et al. (2018) Autophagy Relieves the Function Inhibition and Apoptosis-Promoting Effects on Osteoblast Induced by Glucocorticoid. International Journal of Molecular Medicine, 41, 800-808.
https://doi.org/10.3892/ijmm.2017.3270
[29] Liu, T., Cao, Y., Han, C., et al. (2021) Association of MIR17HG and MIR155HG Gene Variants with Steroid-Induced Osteonecrosis of the Femoral Head in the Population of Northern China. Journal of Orthopaedic Surgery and Research, 16, Article No. 673.
https://doi.org/10.1186/s13018-021-02669-y
[30] Xue, F., Wu, J., Feng, W., et al. (2022) MicroRNA-141 Inhibits the Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Steroid-Induced Osteonecrosis via E2F3. Molecular Medicine Reports, 26, Article No. 234.
https://doi.org/10.3892/mmr.2022.12750
[31] Li, Z., Jiang, C., Ye, C., et al. (2018) MiR-10a-5p, MiR-99a-5p and MiR-21-5p Are Steroid-Responsive Circulating MicroRNAs. American Journal of Translational Research, 10, 1490-1497.
[32] Xiang, S., Li, Z. and Weng, X. (2019) The Role of LncRNA RP11-154D6 in Steroid-Induced Osteonecrosis of the Femoral Head through BMSC Regulation. Journal of Cellular Biochemistry, 120, 18435-18445.
https://doi.org/10.1002/jcb.29161
[33] Wu, Y., Fang, L., Gao, Y., et al. (2022) LncRNA FGD5-AS1 Regulates Bone Marrow Stem Cell Proliferation and Apoptosis by Affecting MiR-296-5p/STAT3 Axis in Steroid-Induced Osteonecrosis of the Femoral Head. Journal of Healthcare Engineering, 2022, Article ID: 9364467.
https://doi.org/10.1155/2022/9364467
[34] Feng, X., Xiang, Q., Jia, J., et al. (2022) CircHGF Suppressed Cell Proliferation and Osteogenic Differentiation of BMSCs in ONFH Via Inhibiting MiR-25-3p Binding to SMAD7. Molecular Therapy Nucleic Acids, 28, 99-113.
https://doi.org/10.1016/j.omtn.2022.02.017
[35] Peng, P., He, W., Zhang, Y.X., et al. (2023) CircHIPK3 Promotes Bone Microvascular Endothelial Cell Proliferation, Migration and Angiogenesis by Targeting MiR-7 and KLF4/VEGF Signaling in Steroid-Induced Osteonecrosis of the Femoral Head. Advances in Clinical and Experimental Medicine, 32, 43-55.
https://doi.org/10.17219/acem/153042