机器人辅助后外侧入路全髋关节置换术的早期临床疗效
Early Clinical Efficacy of Robot-Assisted Posterolateral Approach for Total Hip Arthroplasty
DOI: 10.12677/acm.2024.1441120, PDF, HTML, XML, 下载: 36  浏览: 54 
作者: 郝筱坤, 林 倩:青岛大学附属医院运动医学科,山东 青岛;于腾波*:青岛大学运动医学与健康研究所,山东 青岛
关键词: 全髋关节置换术机器人后外侧入路功能恢复Total Hip Arthroplasty Robots Posterolateral Approach Functional Recovery
摘要: 目的:探讨机器人辅助下全髋关节置换(total hip arthroplasty, THA)的早期疗效,为临床决策提供帮助。方法:回顾分析2021年5月~2022年10月于青岛大学附属医院行全髋关节置换术且符合纳入标准的患者200例,根据手术方式不同分为两组,其中100例行机器人辅助后外侧入路全髋关节置换术,100例行传统后外侧入路全髋关节置换术,两组患者一般情况比较无统计学差异(P > 0.05),具有可比性。术中记录并比较两组患者手术时间、出血量及术后并发症的发生情况,术后3个月记录并比较髋臼前倾角、髋臼外展角、髋臼假体水平距离、髋臼假体垂直距离、股骨假体偏心距、股骨假体柄–干夹角、双下肢长度差,术后15个月采用髋关节Harris评分、牛津大学髋关节评分、Berg平衡量表、遗忘关节评分(F-Js)评价患者功能恢复情况。结果:两组患者均获随访,随访时间12~18个月,平均140.7个月,两组Harris评分、牛津髋关节评分评分、Berg平衡量表、双下肢长度差较术前均有明显改善且差异有统计学意义(P < 0.05)。机器人组Berg平衡量表、牛津髋关节评分及髋臼前倾角均高于普通组,差异有统计学意义(P < 0.05);机器人组术后双下肢长度差低于普通组,差异有统计学意义(P < 0.05);两组Harris评分、遗忘关节评分、髋臼外展角、髋臼假体水平距离、髋臼假体垂直距离、股骨假体柄–干夹角、股骨假体偏心距比较差异无统计学意义(P > 0.05)。结论:与传统THA相比,机器人辅助THA手术时间更长,术中出血量更多,具有一定学习曲线,但定位更加准确,髋臼假体的定位与植入更加精准,患者的髋关节功能及平衡能力能够得到更好的恢复,但其远期疗效还需进一步研究。
Abstract: Objective: To evaluate the early efficacy of robot-assisted total hip arthroplasty (THA) for clinical decision making. Methods: A retrospective analysis was performed on 200 patients who met the inclusion criteria and underwent total hip arthroplasty in the Affiliated Hospital of Qingdao University from May 2021 to October 2022. The patients were divided into two groups according to the different surgical methods. Among them, 100 underwent total hip arthroplasty through a robot-assisted posterolateral approach and 100 underwent traditional posterolateral approach. There was no statistical difference in the general situation between the two groups (P > 0.05), which was comparable. Intraoperative time, amount of blood loss and occurrence of postoperative complications were recorded and compared between the two groups. At 3 months after surgery, acetabular inclination angle, acetabular abduction angle, horizontal distance of acetabular prosthesis, vertical distance of acetabular prosthesis, eccentricity of femoral prosthesis, stem-stem angle of femoral prosthesis and length difference of both lower limbs were recorded and compared. Harriis score, Oxford hip score, Berg balance Scale and amnestic joint score were used to evaluate functional recovery 15 months after surgery. Results: Patients in both groups were followed up for 12 to 18 months, with an average of 14.7 months. Harris score, Oxford hip score, Berg balance scale and lower limb length difference between the two groups were significantly improved compared with those before surgery, and the difference was statistically significant (P < 0.05). Berg balance Scale, Oxford hip score and acetabular inclination angle in robot group were higher than those in ordinary group, the difference was statistically significant (P < 0.05). The difference of postoperative lower limb length in robot group was lower than that in ordinary group, and the difference was statistically significant (P < 0.05). There were no significant differences in Harris score, forgotten joint score, acetabular evocation angle, horizontal distance of acetabular prosthesis, vertical distance of acetabular prosthesis, stem-stem angle of femoral prosthesis and eccentricity of femoral prosthesis between the two groups (P > 0.05). Conclusion: Compared with traditional THA, robot-assisted THA has a longer operation time, more intraoperative blood loss, and a certain learning curve. However, the positioning is more accurate, the positioning and implantation of acetabular prostheses are more accurate, and the hip function and balance ability of patients can be better restored. However, its long-term efficacy needs further study.
文章引用:郝筱坤, 林倩, 于腾波. 机器人辅助后外侧入路全髋关节置换术的早期临床疗效[J]. 临床医学进展, 2024, 14(4): 1015-1021. https://doi.org/10.12677/acm.2024.1441120

1. 引言

全髋关节置换术(total hip arthroplasty, THA)作为一种治疗严重髋关节疾病的一种有效手术方式已经广泛使用 [1] ,术中定位及假体的准确安置对THA的疗效至关重要,有助于患者术后肢体功能改善。但由于髋关节假体定位及放置不良等原因导致的髋关节假体脱位、磨损及术后双下肢不等长等并发症严重影响了患者的满意度 [2] 。与传统THA相比,机器人辅助THA能够更加准确地对髋关节假体进行定位,提高手术的精准性,减少并发症的发生率 [3] 。本研究回顾分析了2021年5月~2022年10月我院分别采用机器人辅助下单纯后外侧入路THA与传统后外侧入路THA治疗髋关节疾病的患者的临床资料,探讨机器人辅助对THA安全性、准确性及近期临床疗效的影响,报告如下。

2. 临床资料

2.1. 患者选择标准

纳入标准:① 年龄55~85岁;② 髋关节疾病包括股骨头坏死、先天性髋关节发育不良、类风湿性关节炎、骨关节炎、强直性脊柱炎、股骨颈骨折等;③ 采用标准后外侧入路机器人辅助THA治疗或传统后外侧入路THA治疗;④ 初次行髋关节手术。排除标准:① 神经肌肉功能不全者、滥用药物者、精神及行为异常者;② 髋关节肿瘤或畸形者;③ 术前存在髋关节感染者;④ 髋关节手术史者。

2021年5月~2022年10月共200例患者符合选择标准纳入本研究,根据手术方式不同分为两组,100例采用机器人辅助后外侧入路THA治疗(r-THA组),100例采用传统后外侧入路THA治疗(m-THA组)。

2.2. 一般资料

机器人组:男42例,女58例,年龄55~82岁,平均66.89岁,左侧41例,右侧59例,身体质量指数15~38 kg/m2,平均26.83 kg/m2,股骨头缺血性坏死56例,髋关节发育不良44例。

普通组:男47例,女53例,年龄55~81岁,平均67.29岁,左侧57例,右侧43例,身体质量指数16~35 kg/m2,平均26.51 kg/m2,股骨头缺血性坏死48例,髋关节发育不良52例。

两组患者一般资料比较差异均无统计学意义(P > 0.05),见表1

Table 1. Comparison of preoperative general conditions between the two groups

表1. 两组患者术前一般情况比较

2.3. 手术方法

两组患者在全身麻醉下取侧卧位,患侧在上,行后外侧入路手术。

r-THA组:在髂前上棘、髌骨下缘中点处安装定位阵列,沿后外侧入路切开外旋肌群及关节囊,显露髋关节,切除对定位可能产生影像的软组织,将定位钉安置在大转子及髋臼上,通过探针与机器人获得定位点,进行注册并登记,创建三维模型,在机器人辅助下按术前规划进行股骨颈截骨与髋臼研磨,并将髋臼杯安置在适宜的位置,用螺钉加固,之后在股骨侧手工完成开髓、扩髓,并按术前规划的大小研磨髓腔,安放试模,满意后放置股骨假体,检查髋关节活动度及假体稳定性,确认无误后常规冲洗、缝合关节囊,逐层关闭切口。

m-THA组省略了定位及注册的操作,按术前规划由术者常规行后外侧入路手术。

2.4. 术后处理及疗效评价指标

术前0.5小时及术后预防性应用抗生素(常规应用头孢唑林钠,若患者过敏则应用克林霉素);术中局部注射罗哌卡因及术后静脉滴注帕瑞昔布,必要时肌肉注射阿片类药物镇痛;术后第一天开始常规应用低分子量肝素抗凝;排除禁忌后鼓励患者术后第一天完全负重。

记录并比较两组患者手术时间、术中出血量及并发症的发生情况,术后定期随访,术后3个月通过骨盆X线片测量髋臼外展角、髋臼前倾角、髋臼假体水平距离、髋臼假体垂直距离、股骨假体偏心距、股骨假体柄–干夹角、双下肢长度差(leg length discrepancy, LLD),末次随访时采用遗忘关节评分(F-JS)、Harris评分(HHS)、牛津大学髋关节评分(OHS)、Berg平衡量表评价患者髋关节功能恢复情况。

2.5. 统计学方法

采用SPSS23统计软件进行分析。计量资料均符合正态分布,以均数 ± 标准差表示,组间比较采用独立样本t检验,组内手术前后比较采用配对t检验,计数资料以率表示,组间比较采用χ2检验或Fisher确切概率法,检验水准取双侧α = 0.05。

3. 结果

两组患者均顺利完成手术,两组均未发现股骨柄假体松动、髋关节脱位、假体周围骨折、移位骨化、感染、血栓等并发症,r-THA组手术时间、术中出血量均高于m-THA组,差异有统计学意义(P < 0.05),见表2。两组患者均获随访,随访时间12~18个月,平均140.7个月,两组Harris评分、牛津髋关节评分、Berg平衡量表较术前均有明显改善且差异有统计学意义(P < 0.05),见表3。r-THA组Berg平衡量表及髋臼前倾角均高于m-THA组,差异有统计学意义(P < 0.05);r-THA组术后双下肢长度差、牛津髋关节评分低于m-THA组,差异有统计学意义(P < 0.05);两组Harris评分、遗忘关节评分、髋臼外展角、髋臼假体水平距离、髋臼假体垂直距离、股骨假体偏心距及股骨假体柄-干夹角比较差异无统计学意义(P > 0.05),见表4

Table 2. Comparison of intraoperative indicators between the two groups

表2. 两组患者术中指标比较

Table 3. Comparison of indicators before and after operation between the two groups

表3. 两组患者手术前后指标比较

Table 4. Comparison of postoperative indexes between the two groups

表4. 两组患者术后指标比较

4. 讨论

随着髋关节生物力学的深入研究,THA作为治疗髋关节疾病的有效手段广受患者好评 [4] 。据报道,无论在发展中国家还是发达国家,患者数量均以18.9%的速度增长 [5] 。即便如此,术后髋关节脱位、假体磨损、假体位置不良以及双下肢不等长等术后并发症仍然是骨科医生与患者的巨大困扰,这与术中假体的精准定位与安放密不可分 [6] [7] 。

THA最常见的术后并发症包括双下肢不等长与髋关节脱位,髋关节脱位的发生率可高达17.7% [8] ,对髋关节脱位的预防与双下肢长度的调整来说,髋臼杯的准确植入起到了非常重要的作用。双下肢不等长是THA术后患者满意度差及感觉不适的主要原因 [9] 。Nossa等人的研究发现,mTHA术后下肢不等长超过10 mm的比例可高达20% [10] ,研究表明,双下肢长度差在3~5 mm时患者并无明显不适,当双下肢长度差超过10 mm时,患者明确表示自己的日常生活受到了困扰 [11] 。Siebel [12] 等人曾对传统THA术后患者进行研究,发现双下肢长度差异的发生率在1%~27%之间波动,双下肢长度差最高者甚至达到70 mm。汪洋 [13] 等人对复杂性髋关节发育不良的研究表明,机器人辅助THA可以明显改善患者的双下肢长度,从而使患者的下肢生物力学得到更好的恢复。在本研究中,r-THA组患者双下肢长度差均控制在5 mm以内,r-THA组患者双下肢长度差控制在8 mm左右,这说明在机器人辅助THA对患者肢体长度的控制有明显的优势,这与假体的精准定位与植入是密不可分的。

假体脱位也是THA术后的早期并发症之一,Lewinnek [14] 等人报道的安全区域(外展角30˚~50˚,前倾角5˚~25˚)一直指导着临床中髋臼杯的定位与植入。Elson [15] 等人的研究表明,在传统THA中,大约80%的髋臼杯可以放置在Lewinnek等人定义的安全区域中,而Kamara [16] 等人在一项回顾性队列研究发现,髋臼杯放置的准确度可以通过机器人辅助THA来进行改善。此外,Clement [17] 等人的研究表明,由于机器人对不同患者的情况进行具体分析,术前那些双下肢长度差异更大的患者通过调整髋臼杯的角度可以更好地改善髋关节的稳定性,使假体脱位的发生率降低。本研究中两组患者术后的外展角与前倾角均在安全区域范围内,而且两组患者髋臼外展角的比较无统计学差异,但在前倾角方面表现出了一定的优势,这与机器人辅助THA在术前进行精确测量分析,术中准确定位与假体植入有着必然的联系。

Bukowski [18] 等人的研究证实,与mTHA组相比,rTHA组的Harris评分明显更高,但他们发现的差异可能没有临床意义,这与目前使用牛津髋关节评分评估髋关节功能的研究类似 [19] 。本研究中rTHA组术后牛津髋关节评分明显更好,有学者认为,牛津髋关节评分的最小临床差异可能低至2至3分 [17] ,这与本研究中得到的结果相似。但是Hamilton [20] 等人先前的研究表明,牛津髋关节评分主要是术前髋关节特异性功能障碍的衡量指标,而在术后观察到的更高水平的表现时,牛津髋关节评分则被削弱了。因此,牛津髋关节评分可能没有测量范围或灵敏度来区分术后表现良好的组。Domb [21] 等人的术后FJS评分为82分,而他们的rTHA组的遗忘关节评分为78分,这与Perets [22] 等人报道的队列研究相符,他们认为rTHA术后遗忘关节评分相对较高,证明了机器人辅助THA在髋关节功能改善方面具有一定的优势。本研究中r-THA组遗忘关节评分虽然较高,但差异并无统计学意义,这可能与随访时间不足有一定关系。

综上所述,与传统THA相比,机器人辅助THA在短期内可以得到更好的髋关节功能恢复,其髋臼假体的植入更加精准,患者满意度较高,但手术时间过长,这与机器人手术的学习曲线有一定的关系。此外,本研究存在一定的不足之处,如样本量不足,随访时间短,缺乏长期随访结果等,其疗效还需进一步研究证实。

作者贡献

郝筱坤参与实验设计、数据收集与整合、文章撰写,林倩参与数据收集与整合,于腾波负责实验设计、文章审阅与修改。

利益冲突

所有作者声明,在课题研究与文章撰写过程中不存在利益冲突,项目经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道。

机构伦理问题

本研究方案经青岛大学附属医院伦理委员会审批通过(QYFYWZLL28260)。

NOTES

*通讯作者。

参考文献

[1] Konan, S. and Duncan, C.P. (2018) Total Hip Arthroplasty in Patients with Neuromuscular Imbalance. The Bone & Joint Journal, 100, 17-21.
https://doi.org/10.1302/0301-620X.100B1.BJJ-2017-0571.R1
[2] Moskal, J.T. and Capps, S.G. (2010) Improving the Accuracy of Acetabular Component Orientation: Avoiding Malposition. American Academy of Orthopaedic Surgeons, 18, 286-296.
https://doi.org/10.5435/00124635-201005000-00005
[3] Nawabi, D.H., Conditt, M.A., Ranawat, A.S., et al. (2013) Haptically Guided Robotic Technology in Total Hip Arthroplasty: A Cadaveric Investigation. Journal of Engineering in Medicine, 227, 302-309.
https://doi.org/10.1177/0954411912468540
[4] Learmonth, I.D., Young, C. and Rorabeck, C. (2007) The Operation of the Century: Total Hip Replacement. The Lancet, 370, 1508-1519.
https://doi.org/10.1016/S0140-6736(07)60457-7
[5] Lopez, C.D., Boddapati, V., Neuwirth, A.L., et al. (2020) Hospital and Surgeon Medicare Reimbursement Trends for Total Joint Arthroplasty. Arthroplasty Today, 6, 437-444.
https://doi.org/10.1016/j.artd.2020.04.013
[6] Gao, T. and Zhu, H. (2020) A Commentary on “A Retrospective Study Comparing a Single Surgeon’s Experience on Manual versus Robot-Assisted Total Hip Arthroplasty after the Learning Curve of the Latter Procedure, a Cohort Study”. International Journal of Surgery, 78, 86.
https://doi.org/10.1016/j.ijsu.2020.04.034
[7] Biedermann, R., Tonin, A., Krismer, M., et al. (2005) Reducing the Risk of Dislocation after Total Hip Arthroplasty: The Effect of Orientation of the Acetabular Component. The Journal of Bone and Joint Surgery, 87, 762-769.
https://doi.org/10.1302/0301-620X.87B6.14745
[8] Dargel, J., Oppermann, J., Brüggemann, G.P., et al. (2014) Dislocation Following Total Hip Replacement. Deutsches Arzteblatt International, 111, 884-890.
https://doi.org/10.3238/arztebl.2014.0884
[9] Flecher, X., Ollivier, M. and Argenson, J.N. (2016) Lower Limb Length and Offset in Total Hip Arthroplasty. Orthopaedics & Traumatology: Surgery & Research, 102, S9-S20.
https://doi.org/10.1016/j.otsr.2015.11.001
[10] Nossa, J.M., Muñoz, J.M., Riveros, E.A., et al. (2018) Leg Length Discrepancy after Total Hip Arthroplasty: Comparison of 3 Intraoperative Measurement Methods. HIP International, 28, 254-258.
https://doi.org/10.5301/hipint.5000577
[11] Bolink, S.A.A.N., Lenguerrand, E., Brunton, L.R., et al. (2019) The Association of Leg Length and Offset Reconstruction after Total Hip Arthroplasty with Clinical Outcomes. Clinical Biomechanics, 68, 89-95.
https://doi.org/10.1016/j.clinbiomech.2019.05.015
[12] Siebel, T. and Käfer, W. (2005) Clinical Outcome Following Robotic Assisted versus Conventional Total Hip Arthroplasty: A Controlled and Prospective Study of Seventy-One Patients. Zeitschrift fur Orthopadie und Unfallchirurgie, 143, 391-398.
https://doi.org/10.1055/s-2005-836776
[13] 汪洋, 纪保超, 陈永杰. MAKO机器人在复杂性人工全髋关节置换术中应用的近期疗效[J]. 中国修复重建外科杂志, 2022, 36(5): 555-560.
[14] Lewinnek, G.E., Lewis, J.L., Tarr, R., et al. (1978) Dislocations after Total Hip-Replacement Arthroplasties. The Journal of Bone and Joint Surgery, 60, 217-220.
https://doi.org/10.2106/00004623-197860020-00014
[15] Elson, L., Dounchis, J., Illgen, R., et al. (2015) Precision of Acetabular Cup Placement in Robotic Integrated Total Hip Arthroplasty. HIP International, 25, 531-536.
https://doi.org/10.5301/hipint.5000289
[16] Kamara, E., Robinson, J., Bas, M.A., et al. (2017) Adoption of Robotic vs Fluoroscopic Guidance in Total Hip Arthroplasty: Is Acetabular Positioning Improved in the Learning Curve? The Journal of Arthroplasty, 32, 125-130.
https://doi.org/10.1016/j.arth.2016.06.039
[17] Clement, N.D., Gaston, P., Bell, A., et al. (2021) Robotic Arm-Assisted versus Manual Total Hip Arthroplasty. Bone & Joint Research, 10, 22-30.
https://doi.org/10.1302/2046-3758.101.BJR-2020-0161.R1
[18] Bukowski, B.R., Anderson, P., Khlopas, A., et al. (2016) Improved Functional Outcomes with Robotic Compared with Manual Total Hip Arthroplasty. Surgical Technology International, 29, 303-308.
[19] Wolfson, T.S., Ryan, M.K., Begly, J.P., et al. (2019) Outcome Trends after Hip Arthroscopy for Femoroacetabular Impingement: When Do Patients Improve? Arthroscopy, 35, 3261-3270.
https://doi.org/10.1016/j.arthro.2019.06.020
[20] Hamilton, D.F., Giesinger, J.M., Macdonload, D.J., et al. (2016) Responsiveness and Ceiling Effects of the Forgotten Joint Score-12 Following Total Hip Arthroplasty. Bone & Joint Research, 5, 87-91.
https://doi.org/10.1302/2046-3758.53.2000480
[21] Domb, B.G., Chen, J.W., Lall, A.C., et al. (2020) Minimum 5-Year Outcomes of Robotic-Assisted Primary Total Hip Arthroplasty with a Nested Comparison against Manual Primary Total Hip Arthroplasty: A Propensity Score-Matched Study. The Journal of the American Academy of Orthopaedic Surgeons, 28, 847-856.
https://doi.org/10.5435/JAAOS-D-19-00328
[22] Perets, I., Walsh, J.P., Close, M.R., et al. (2018) Robot-Assisted Total Hip Arthroplasty: Clinical Outcomes and Complication Rate. The International Journal of Medical Robotics and Computer Assisted Surgery, 14, e1912.
https://doi.org/10.1002/rcs.1912