主动监测在前列腺癌中的研究进展
Advances of Active Surveillance in Prostate Cancer
DOI: 10.12677/acm.2024.1441113, PDF, HTML, XML, 下载: 21  浏览: 31 
作者: 林裕翔, 翟凌云, 徐光勇*:重庆医科大学附属第二医院泌尿外科,重庆
关键词: 主动监测前列腺癌Active Surveillance Prostate Cancer
摘要: 随着前列腺癌筛查技术的进步,中、低危前列腺癌患者的占比越来越大,主动监测作为根治性治疗的替代方法应运而出。主动监测包括前列腺特异抗原检测、直肠指检、活组织检查以及多参数磁共振成像等技术,以低危和部分中危前列腺癌患者为对象,通过定期随访相关指标的手段来达到延迟甚至完全省略根治性治疗目的。本文就主动监测在前列腺癌中的研究进展作一综述,供临床参考。
Abstract: With advances in prostate malignancy screening techniques and the increasing proportion of patients with intermediate- and low-risk prostate malignancies, active surveillance has emerged as an alternative to radical treatment. Active surveillance includes technologies such as prostate-specific antigen testing, rectal fingerprinting, biopsy, and multiparametric magnetic resonance imaging, etc. It targets patients with low-risk and some intermediate-risk prostate malignant tumors, and achieves the goal of delaying or even completely omitting radical treatment by means of regular follow-up of relevant indexes. This article provides a review of the research progress of active monitoring in prostate malignant tumors for clinical reference.
文章引用:林裕翔, 翟凌云, 徐光勇. 主动监测在前列腺癌中的研究进展[J]. 临床医学进展, 2024, 14(4): 967-975. https://doi.org/10.12677/acm.2024.1441113

1. 引言

前列腺癌(Prostate Cancer, PCa)是男性泌尿生殖系统中最常见的癌,也是全球男性癌症死亡的第二大因素 [1] 。随着1990年前列腺特异抗原(prostate specific antigen, PSA)应用到前列腺癌的检测中,前列腺癌的诊断显著地从转移性疾病转变为了局限性疾病 [2] ,这拉开了前列腺癌早期筛查的序幕。然而由于人们生活质量的提高,每年健康体检的泛化,中老年男性筛查出来的前列腺癌不断增多。我们发现早期的前列腺癌大多为惰性肿瘤,即患者可能一生都不会出现临床症状,或导致癌症相关死亡。Resnick的队列研究表明,接受前列腺切除术的患者更容易发生尿失禁(2年比值比6.22,95%置信区间(confidence interval, CI),1.92~20.29;5年比值比5.10,95% CI,2.29~11.36)和性功能障碍(2年比值比3.46,95% CI,1.93~6.17;5年比值比1.96,95% CI,1.05~3.63) [3] 。这也就意味着对其进行根治性治疗所导致的严重影响生活质量的副作用,包括尿失禁、性功能障碍等可能远大于患者的生存获益。因此,主动监测(active surveillance, AS)作为低危和部分中危前列腺癌患者进行根治性治疗的替代方法被提出。

主动监测是一种结合PSA检测、直肠指检(digital rectal examination, DRE)、活组织检查、多参数磁共振成像(multi-parametric magnetic resonance imaging, mp-MRI)等前列腺癌相关的检查手段为一体,监测低危前列腺癌患者的肿瘤发展情况,在患者出现症状、分级分期及相关评分升高等情况下,及时在治疗窗口期进行根治性治疗。这不仅可以让前列腺癌患者不错过治疗窗口期,在必要时得到积极而又有效的根治性治疗;还可以让患者在病情稳定、肿瘤未见确切发展的情况下,推迟甚至完全省略根治性治疗,以减少甚至避免其可能导致的副作用。

2. 主动监测的方式

2.1. 前列腺特异抗原PSA

前列腺特异抗原由前列腺上皮细胞分泌产生,存在于前列腺组织和精液中,其血清学主要检测指标为总前列腺特异抗原(total PSA, tPSA)、游离前列腺特异抗原(free PSA, fPSA)和游离前列腺特异抗原与总前列腺特异抗原的比值(fPSA/tPSA)。Goteborg-1试验指出,PSA筛查的年龄越小,前列腺癌更具侵袭性的风险越低,死亡率越低 [4] 。目前普遍认为45岁及以上需要筛查PSA,以作为检测出前列腺癌的第一信号。当tPSA > 4.0 ng/ml,和/或fPSA/tPSA < 0.25时,考虑有前列腺癌的可能。如果tPSA超过10 ng/mL,则认为患前列腺癌的可能性超过50% [5] 。

对于前列腺癌的主动监测,PSA动力学指标中的前列腺特异抗原速度(PSA velocity,PSAV,每时间间隔的绝对前列腺特异抗原增加)和前列腺特异抗原加倍时间(PSA doubling time,PSADT,初始前列腺特异抗原水平加倍的时间间隔)被纳入到评估标准之中。一项回顾性研究表明,高PSAV和短PSADT,与肿瘤的进展有关 [6] 。与此同时,多项研究认为,PSADT小于3年或PSAV大于0.75/1ng/mL/年,是早期低危前列腺癌的进展迹象 [7] [8] [9] 。

然而,由于前列腺特异抗原在前列腺癌中的特异度不高,即前列腺增生、前列腺炎、前列腺疾病相关的各种手术操作和检查,如直肠指检,即使是微乎其微的损伤,均可引起前列腺特异抗原水平的升高。因此,对于前列腺癌的诊断及主动监测不能仅依靠前列腺特异抗原。

2.2. 直肠指检DRE

直肠指检是医生最能直观的感受到前列腺的一种检查,如果感受到前列腺内有结节、质地较硬,则怀疑前列腺癌的可能。DRE被广泛认为是前列腺癌患者临床评估的组成部分,但其在主动监测中的价值尚未确定。一份荟萃分析指出,在初级保健中心单独使用DRE的前列腺癌敏感性和特异性均低于60% [10] 。而另一个研究发现,DRE在总体人群中的敏感性较低(约19%),但特异性高达90% [11] 。尽管如此,欧洲泌尿外科协会(European Association of Urology, EAU)的指南中仍然要求早期诊断应进行PSA检测,并进行DRE [12] 。

2.3. 活组织检查

2.3.1. 系统活检

对于任何肿瘤来说,活组织检查始终确诊的手段,是金标准。而对于前列腺癌来说,在DRE阳性或PSA高于临界值时,在超声引导下进行10~12次经直肠或会阴的核心系统活检(System Biopsy, SB)同样是有必要的 [13] 。但由于系统活检的随机性导致检出的假阴性发生率增高 [14] 、超声无法获取肿瘤核心组织导致前列腺癌评分和分期分级的低估 [15] ,以及无意义前列腺癌的检出导致过度诊断及过度治疗 [16] ,事先进行影像学评估变得尤为重要。

2.3.2. 磁共振–经直肠超声融合靶向活检

多项研究证实,MRI引导的靶向活检(targeted biopsy, TB)技术,与SB相比,在阳性核心数量方面明显更有效 [17] [18] [19] [20] [21] 。Hugosson在其随机对照试验中发现,TB可以有效帮助减少前列腺癌的过度诊断 [22] 。与此同时,与Frye等人的研究证实了在主动监测的随访期间,TB的重新分类显著优于SB [23] 。然而,单纯的TB同样有不可忽视的假阴性,SB仍不可被忽视 [24] [25] 。因此,EAU提出将SB与前列腺MRI识别的可疑病变的TB相结合,磁共振–经直肠超声(magnetic resonance imaging/transrectal ultrasound, MRI/TRUS)融合活检从此得到广泛关注 [12] 。

众所周知,在主动监测中重复活检不可避免地带来过度创伤,降低患者依从性,带来失访风险,与患者的生存获益相矛盾。Pepe等人的研究表明,MRI/TRUS融合活检可减少主动监测期间的重复活检 [26] 。对于既往活检阴性或即将纳入主动监测中的患者来说,MRI/TRUS融合活检可以提供更可靠的风险分类 [27] 。2022年中国临床肿瘤学会(Chinese Society of Clinical Oncology, CSCO)结合《前列腺穿刺活检专家共识》同样指出,MRI/TRUS融合活检能明显提高临床有意义前列腺癌的检出率 [28] [29] 。Borghesi等人和Benelli等人的研究结论证实了这一点 [30] [31] 。

2.4. 多参数磁共振成像mp-MRI

活组织检查归根到底仍然是一种有创操作,什么时候进行随访活检,PSA升高和/或DRE阳性时需不需要立即执行活组织检查,这些成为了大家关注的问题。2023年的Movember国际共识会议给出了参考建议,常规的多参数磁共振成像(mp-MRI)可以省略DRE,当PSA或DRE发生改变时应先进行mp-MRI检查再评估是否行活组织检查,当mp-MRI和其它参数(如PSA动力学)稳定时可暂缓活组织检查 [32] 。那么什么是多参数磁共振成像呢?

多参数磁共振成像是一种不断发展的前列腺癌检测技术。早期的mp-MRI使用T2加权成像(T2WI)对前列腺腺下结构进行可视化和表征。T2WI用作过渡区的主要评估,将癌症检测为中等低信号强度的焦点区域。T1加权成像(T1WI)可以确定出血的存在和位置,也可以在T2WI上表现为低信号 [33] 。除了T1WI和T2WI提供的解剖信息,mp-MRI还包括功能信息。前列腺的扩散加权成像(DWI)可用于识别前列腺的周边区域,它可以使用不同的b值进行采样。较低的b值结合了更多的DWI和T2WI信息,而较高的b值仅显示DWI效应。此外,表观扩散系数(ADC)的计算可用于识别具有较低ADC值的可疑病变,表明与癌细胞的相关性较高。

2.4.1. 前列腺影像报告和数据系统

自从2012年第一版前列腺影像报告和数据系统(Prostate Imaging-Reporting and Data System version 1, PI-RADS v1)出版,并于2019年更新修订为PI-RADS v2.1,前列腺mp-MRI的标准化程度有了显著提高。也正是PI-RADS评分的出现,mp-MRI逐渐用于前列腺癌的主动监测中。PI-RADS评分共5分,其中1~2分考虑良性病灶可能性大,4~5分考虑恶性病灶可能性大,3分则为两者的中间值,良恶性可能差距不大。

Ploussard等人指出,使用PI-RADS评分的标准化mp-MRI报告可改善AS患者的选择,并降低重新分类的风险 [34] 。一些研究提出,对于处在主动监测中的前列腺癌患者,当PSA和DRE稳定时,MRI可能是替代重复活检的安全方法 [35] [36] 。对于PI-RADS评分在主动监测中的具体应用,Zhai等人的荟萃分析研究给出了初步答复,PI-RADS 4分或5分的主动监测候选者可能不适合加入其中,即使他们符合当前各指南的标准,PI-RADS 3分及以下的候选者加入主动监测中会相对更安全 [37] 。然而在PI-RADS v2.1评分中,PI-RADS 3分是良、恶性病变的临界值。在前列腺癌患者进行主动监测随访时,mp-MRI的PI-RADS评分为3分或从更低的分数达到3分以后,是否可以继续主动监测,延迟根治性治疗的时间,是目前大家关注的问题。目前一些研究证实mp-MRI稳定且PSAD < 0.15 ng/ml/cm3时,可以安全地省略活组织检查 [38] [39] 。然而Nguyen等人的回顾性研究指出,当PI-RADS为3分且前列腺特异抗原密度(PSA density, PSAD) ≤ 0.15 ng/ml/cm3时,虽然71.5%的男性可以省略活组织检查,但会有15%的临床有意义前列腺癌漏诊 [40] 。Wang等人指出,PI-RADS ≥ 3或PSAD ≥ 0.3 ng/ml/cm3时总前列腺癌和临床有意义前列腺癌的灵敏度与阴性预测值均在90%以上 [41] 。当然对于PI-RADS来说,这个超高的灵敏度和阴性预测值是受到了PSAD数据的影响,但我们仍然可以合理推测,以PI-RADS 3分作为主动监测的临界点也是有一定风险的。因而在主动监测的前列腺癌患者中,PI-RADS评分提示进展迹象的阈值还有待进一步的研究。

2.4.2. 前列腺癌放射序列评估变化

由于缺乏关于前列腺MRI在主动监测前列腺癌患者随访期间的循证数据,欧洲肿瘤学院在主动监测研讨会上提出前列腺癌放射序列评估变化(Prostate Cancer Radiological Estimation of Change in Sequential Evaluation, PRECISE) [42] 。他们在PRECISE指南建立之初就申明,PRECISE指南是为了进一步向主动监测期间的前列腺癌患者提供来自前列腺MRI方面的参考,并不是为了取代或者与PI-RADS指南相竞争。毕竟PRECISE的评估是通过既往前列腺MRI的可疑病灶与本次MRI检查相比较而进行的,这意味着初次的前列腺MRI评估依旧只能使用PI-RADS。Bhanji回顾性地通过PRECISE与PI-RADS相比较,得出在重分类方面PI-RADS还是有一定的优势所在 [43] 。

PRECISE与PI-RADS相类似,其同样分为1~5分。3作为中间值其意味着稳定的MRI外观,即无新的局灶性/弥漫性病变,而1~2分意味着可疑病灶的明显缩小或不显现,4~5分意味着可疑病灶的明显扩大或分期明显进展 [42] 。Caglic的前瞻性研究表明,当PRECISE ≥ 4分时提示前列腺癌进展的可能高达96%,应协同其他监测指标考虑重新进行活组织检查 [44] 。Aerts同样指出,当PRECISE ≥ 4分时,4年内发生显着进展的风险是PRECISE ≤ 3分的4倍 [45] 。这意味着当处在主动监测的前列腺癌患者的PRECISE评分 > 3,我们临床医师应考虑密切监测以确保出现进展时及时进行更深层次的评估与可能需要的治疗措施。然而O’Connor的研究表明,在具有稳定MRI (PRECISE < 4)间期的logistic回归分析中,PSAD是从低危前列腺癌进展到 ≥ 中危前列腺癌危险因素之一(单变量1.676,95% CI,1.138~2.468,P = 0.009;多变量1.393,95% CI,0.894~2.172,P = 0.024);对于从低危前列腺癌进展到高危前列腺癌,PSAD是进展的唯一危险因素(单变量1.951,95% CI,1.172~3.246,P = 0.01)。这告诉我们不能过多地关注PRECISE评分,因为当MRI稳定时若PSAD较高也会增加进展的风险 [46] 。然而由于当前已发表数据的研究项目较少、患者量较少、放射科医生对PRECISE的掌握有待考究,PRECISE评分对主动监测的实际作用还需保持关注。

2.5. 生物标志物

前列腺特异性膜抗原(prostate specific membrane antigen, PSMA)是前列腺癌诊断和治疗的一个有前途的靶点,因为它具有作为前列腺癌患者生物标志物的适当特性。PSMA是一种II型跨膜糖蛋白,除转移性肿瘤外,几乎在所有原发性前列腺肿瘤中均过表达 [47] [48] 。PSMA PET是一种用于检测和分期原发性或复发性前列腺病变的新型成像技术。早期研究发现,68Ga-PSMA PET可用于指导高度怀疑前列腺癌患者的重复活检,而当68Ga-PSMA PET与mp-MRI相结合进行融合活检时,前列腺癌诊断效能得到明显提高 [49] 。

Borque-Fernando等人对主动监测情景下进行了一项前瞻性评估,4Kscore与肿瘤重分类显著相关,这与此前Lin等人对主动监测候选患者的研究结果一致 [50] [51] 。由于4Kscore对可能的临床有意义前列腺癌男性和惰性肿瘤或无癌症男性具有区分作用,未来可能将其作为识别活检更可能获益的患者的良好标志物。Eure等人报道,与未接受GPS检测的男性相比,接受GPS检测的男性主动监测摄取率和1年主动监测持续率更高 [52] 。Tosoian等人对主动监测中的男性进行评估,研究表明PCA3与前列腺癌的重分类之间存在一定联系 [53] 。Cantiello等人发现,在鉴别符合主动监测条件的男性中,PHI的预测准确性优于PCA3,导致更高的净获益 [54] [55] 。但一些研究表明,这些生物标志物需与其他标志物或已知危险因素相结合,以确保检出率 [56] [57] 。

3. 主动监测的对象

主动监测最初只用于低危前列腺癌的患者,而随着主动监测在低危前列腺癌患者中获益越来越大,专家们开始思考能否对中危前列腺癌患者同样选择主动监测,延缓积极治疗。结果表明,对一部分特定的中危前列腺癌患者来说,主动监测是可行的 [58] 。

随着对主动监测对象的研究不断增加,NCCN、EAU和AUA更新了前列腺癌主动监测候选者纳入标准的指南 [9] [12] [59] 。指南使用PSA、PSAD、Gleason分级系统更新后的ISUP分级组、肿瘤体积、临床T分期进行主动监测患者的选择。由于他们对前列腺癌的低危、部分有利中危患者的选择各有不同,普遍的共识是对于低危人群(GG1伴PSA < 10 ng/mL和≤ T2a)的男性,AS是首选治疗方法,也是中危人群(GG1伴PSA < 20 ng/mL和≤ T2a,或GG2伴PSA < 10 ng/mL和≤ T2a伴低肿瘤体积且< 50%阳性核芯总数)的男性的首选治疗方法。

4. 主动监测的随访

对于纳入主动监测中的前列腺癌患者来说,随访是重中之重。主动监测的随访是可变且异质的。早期的大多数队列采用PSA间隔3~6个月,DRE间隔6~12个月,确认性活检间隔1~1.5年和随访活检间隔1~3年进行定期监测 [10] [11] [17] - [27] 。近年来,多数队列包括了每1~3年进行复查的前列腺mp-MRI检查 [34] [35] [36] [38] [39] [40] [41] [44] [45] [46] 。

当疾病进展时,处在主动监测中的前列腺癌患者将转为积极治疗,主要考虑三类:临床进展、PSA动力学和组织学进展。临床进展通常定义为MRI的PI-RADS和PRECISE评分、直肠指检、临床T分期三方面。当MRI有进展(PI-RADS ≥ 4或PRECISE ≥ 4)或直肠指检阳性或临床T分期增加时,提示肿瘤进展可能,需结合PSA动力学考虑是否进行进一步的活组织检查和其他干预措施。在大多数研究中PSA动力学的PSADT < 3年或PSAV > 0.75/1 ng/mL/年或PSAD ≥ 0.3 ng/ml/cm3被用作肿瘤进展的替代指标。

5. 小结与展望

主动监测是为低危和部分中危前列腺癌患者提供一个延迟甚至完全省略根治性治疗的选择。通过PSA、DRE、活组织检查、mp-MRI等手段监测患者病灶的进展情况,及时作出继续监测或转为积极治疗的抉择,提高患者的生活质量。尽管mp-MRI的PI-RADS和PRECISE评分并没有被相关指南纳入为候选者的筛选标准之一,但我们期待着当mp-MRI技术不断地更新、成熟,它将替代DRE,协同PSA动力学延缓随访活检的时间,在前列腺癌的早期诊断、主动监测的重新分类等方面逐步成为不可或缺的一部分。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Neppl-Huber, C., Zappa, M., Coebergh, J.W., et al. (2012) Changes in Incidence, Survival and Mortality of Prostate Cancer in Europe and the United States in the PSA Era: Additional Diagnoses and Avoided Deaths. Annals of Oncology, 23, 1325-1334.
https://doi.org/10.1093/annonc/mdr414
[3] Resnick, M.J., Koyama, T., Fan, K.H., et al. (2013) Long-Term Functional Outcomes after Treatment for Localized Prostate Cancer. The New England Journal of Medicine, 368, 436-445.
https://doi.org/10.1056/NEJMoa1209978
[4] Godtman, R.A., Kollberg, K.S., Pihl, C.G., et al. (2022) The Association between Age, Prostate Cancer Risk, and Higher Gleason Score in a Long-Term Screening Program: Results from the Göteborg-1 Prostate Cancer Screening Trial. European Urology, 82, 311-317.
https://doi.org/10.1016/j.eururo.2022.01.018
[5] Sekhoacha, M., Riet, K., Motloung, P., et al. (2022) Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules, 27, Article 5730.
https://doi.org/10.3390/molecules27175730
[6] Fernández-Anguita, P.J., Ventosa-Puig, M., Díaz De Mera-Sánchez Migallón, I., et al. (2023) Value of Prostate-Specific Antigen Kinetics in Patients with Low-Risk Prostate Cancer under Active Surveillance. Urologia Internationalis, 107, 706-712.
https://doi.org/10.1159/000530963
[7] Goluboff, E.T., Heitjan, D.F., Devries, G.M., et al. (1997) Pretreatment Prostate Specific Antigen Doubling Times: Use in Patients before Radical Prostatectomy. Journal of Urology, 158, 1876-1878.
https://doi.org/10.1016/S0022-5347(01)64154-5
[8] Egawa, S., Arai, Y., Tobisu, K., et al. (2000) Use of Pretreatment Prostate-Specific Antigen Doubling Time to Predict Outcome after Radical Prostatectomy. Prostate Cancer and Prostatic Diseases, 3, 269-274.
https://doi.org/10.1038/sj.pcan.4500424
[9] Schaeffer, E.M., Srinivas, S., Adra, N., et al. (2023) Prostate Cancer, Version 4.2023, NCCN Clinical Practice Guidelines in Oncology. The National Comprehensive Cancer Network, 21, 1067-1096.
https://doi.org/10.6004/jnccn.2023.0050
[10] Naji, L., Randhawa, H., Sohani, Z., et al. (2018) Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. The Annals of Family Medicine, 16, 149-154.
https://doi.org/10.1370/afm.2205
[11] Herrera-Caceres, J.O., Wettstein, M.S., Goldberg, H., et al. (2020) Utility of Digital Rectal Examination in a Population with Prostate Cancer Treated with Active Surveillance. Canadian Urological Association Journal, 14, E453-E457.
https://doi.org/10.5489/cuaj.6341
[12] Mottet, N., Van Den Bergh, R.C.N., Briers, E., et al. (2021) EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 79, 243-262.
https://doi.org/10.1016/j.eururo.2020.09.042
[13] Mottet, N., Bellmunt, J., Bolla, M., et al. (2017) EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 71, 618-629.
https://doi.org/10.1016/j.eururo.2016.08.003
[14] Hodge, K.K., Mcneal, J.E. and Stamey, T.A. (1989) Ultrasound Guided Transrectal Core Biopsies of the Palpably Abnormal Prostate. Journal of Urology, 142, 66-70.
https://doi.org/10.1016/S0022-5347(17)38663-9
[15] Boesen, L. (2017) Multiparametric MRI in Detection and Staging of Prostate Cancer. Danish Medical Journal, 64, B5327.
[16] Lee, D.J., Recabal, P., Sjoberg, D.D., et al. (2016) Comparative Effectiveness of Targeted Prostate Biopsy Using Magnetic Resonance Imaging Ultrasound Fusion Software and Visual Targeting: A Prospective Study. Journal of Urology, 196, 697-702.
https://doi.org/10.1016/j.juro.2016.03.149
[17] Castellucci, R., Linares Quevedo, A.I., Sánchez Gómez, F.J., et al. (2017) Prospective Nonrandomized Study of Diagnostic Accuracy Comparing Prostate Cancer Detection by Transrectal Ultrasound-Guided Biopsy to Magnetic Resonance Imaging with Subsequent MRI-Guided Biopsy in Biopsy-Naïve Patients. Minerva Urology and Nephrology, 69, 589-595.
https://doi.org/10.23736/S0393-2249.17.02845-4
[18] Delongchamps, N.B., Peyromaure, M., Schull, A., et al. (2013) Prebiopsy Magnetic Resonance Imaging and Prostate Cancer Detection: Comparison of Random and Targeted Biopsies. Journal of Urology, 189, 493-499.
https://doi.org/10.1016/j.juro.2012.08.195
[19] Kam, J., Yuminaga, Y., Kim, R., et al. (2018) Does Magnetic Resonance Imaging-Guided Biopsy Improve Prostate Cancer Detection? A Comparison of Systematic, Cognitive Fusion and Ultrasound Fusion Prostate Biopsy. Prostate International, 6, 88-93.
https://doi.org/10.1016/j.prnil.2017.10.003
[20] Wegelin, O., Exterkate, L., Van Der Leest, M., et al. (2019) The FUTURE Trial: A Multicenter Randomised Controlled Trial on Target Biopsy Techniques Based on Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer in Patients with Prior Negative Biopsies. European Urology, 75, 582-590.
https://doi.org/10.1016/j.eururo.2018.11.040
[21] Elkhoury, F.F., Felker, E.R., Kwan, L., et al. (2019) Comparison of Targeted vs Systematic Prostate Biopsy in Men Who Are Biopsy Naive: The Prospective Assessment of Image Registration in the Diagnosis of Prostate Cancer (PAIREDCAP) Study. JAMA Surgery, 154, 811-818.
https://doi.org/10.1001/jamasurg.2019.1734
[22] Hugosson, J., Månsson, M., Wallström, J., et al. (2022) Prostate Cancer Screening with PSA and MRI Followed by Targeted Biopsy Only. The New England Journal of Medicine, 387, 2126-2137.
https://doi.org/10.1056/NEJMoa2209454
[23] Frye, T.P., George, A.K., Kilchevsky, A., et al. (2017) Magnetic Resonance Imaging-Transrectal Ultrasound Guided Fusion Biopsy to Detect Progression in Patients with Existing Lesions on Active Surveillance for Low and Intermediate Risk Prostate Cancer. Journal of Urology, 197, 640-646.
https://doi.org/10.1016/j.juro.2016.08.109
[24] Schoots, I.G., Nieboer, D., Giganti, F., et al. (2018) Is Magnetic Resonance Imaging-Targeted Biopsy a Useful Addition to Systematic Confirmatory Biopsy in Men on Active Surveillance for Low-Risk Prostate Cancer? A Systematic Review and Meta-Analysis. BJU International, 122, 946-958.
https://doi.org/10.1111/bju.14358
[25] Hamoen, E.H.J., Hoeks, C.M.A., Somford, D.M., et al. (2019) Value of Serial Multiparametric Magnetic Resonance Imaging and Magnetic Resonance Imaging-Guided Biopsies in Men with Low-Risk Prostate Cancer on Active Surveillance after 1 Yr Follow-Up. European Urology Focus, 5, 407-415.
https://doi.org/10.1016/j.euf.2017.12.008
[26] Pepe, P., Pepe, L., Pennisi, M., et al. (2022) Confirmatory Transperineal Saturation Prostate Biopsy Combined with MpMRI Decrease the Reclassification Rate in Men Enrolled in Active Surveillance: Our Experience in 100 Men Submitted to Eight-Years Scheduled Biopsy. Archivio Italiano Di Urologia E Andrologia, 94, 270-273.
https://doi.org/10.4081/aiua.2022.3.270
[27] Dieffenbacher, S., Nyarangi-Dix, J., Giganti, F., et al. (2021) Standardized Magnetic Resonance Imaging Reporting Using the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation Criteria and Magnetic Resonance Imaging/Transrectal Ultrasound Fusion with Transperineal Saturation Biopsy to Select Men on Active Surveillance. European Urology Focus, 7, 102-110.
https://doi.org/10.1016/j.euf.2019.03.001
[28] 中华医学会男科学分会, 前列腺穿刺活检专家共识编写组. 前列腺穿刺活检专家共识[J]. 中华男科学杂志, 2022, 28(5): 462-470.
[29] 顾伟杰, 朱耀. 2022版《CSCO前列腺癌诊疗指南》更新要点解读[J]. 中国肿瘤外科杂志, 2022, 14(3): 224-232.
[30] Borghesi, M., Bianchi, L., Barbaresi, U., et al. (2021) Diagnostic Performance of MRI/TRUS Fusion-Guided Biopsies vs. Systematic Prostate Biopsies in Biopsy-Naïve, Previous Negative Biopsy Patients and Men Undergoing Active Surveillance. Minerva Urology and Nephrology, 73, 357-366.
https://doi.org/10.23736/S2724-6051.20.03758-3
[31] Benelli, A., Vaccaro, C., Guzzo, S., et al. (2020) The Role of MRI/TRUS Fusion Biopsy in the Diagnosis of Clinically Significant Prostate Cancer. Therapeutic Advances in Urology, 12.
https://doi.org/10.1177/1756287220916613
[32] Moore, C.M., King, L.E., Withington, J., et al. (2023) Best Current Practice and Research Priorities in Active Surveillance for Prostate Cancer—A Report of a Movember International Consensus Meeting. European Urology Oncology, 6, 160-182.
https://doi.org/10.1016/j.euo.2023.01.003
[33] 王立鹏, 阳青松, 张威, 等. 多参数磁共振成像在前列腺癌中的诊断价值[J]. 第二军医大学学报, 2019, 40(11): 1236-1241.
[34] Ploussard, G., Rouvière, O., Rouprêt, M., et al. (2022) The Current Role of MRI for Guiding Active Surveillance in Prostate Cancer. Nature Reviews Urology, 19, 357-365.
https://doi.org/10.1038/s41585-022-00587-0
[35] Greenberg, J.W., Koller, C.R., Lightfoot, C., et al. (2024) Annual MpMRI Surveillance: PI-RADS Upgrading and Increasing Trend Correlated with Patients Who Harbor Clinically Significant Disease. Urologic Oncology: Seminars and Original Investigations.
https://doi.org/10.1016/j.urolonc.2024.01.005
[36] Schmid, F.A., Lieger, L., Saba, K., et al. (2023) Therapy Decisions after Diagnosis of Prostate Cancer in Men with Negative Prostate MRI. Prostate, 83, 56-63.
https://doi.org/10.1002/pros.24435
[37] Zhai, L., Fan, Y., Meng, Y., et al. (2019) The Role of Prostate Imaging Reporting and Data System Score in Gleason 3  3 Active Surveillance Candidates Enrollment: A Diagnostic Meta-Analysis. Prostate Cancer and Prostatic Diseases, 22, 235-243.
https://doi.org/10.1038/s41391-018-0111-4
[38] Luiting, H.B., Remmers, S., Boevé, E.R., et al. (2022) A Multivariable Approach Using Magnetic Resonance Imaging to Avoid a Protocol-Based Prostate Biopsy in Men on Active Surveillance for Prostate Cancer-Data from the International Multicenter Prospective PRIAS Study. European Urology Oncology, 5, 651-658.
https://doi.org/10.1016/j.euo.2022.03.007
[39] Luzzago, S., Piccinelli, M.L., Mistretta, F.A., et al. (2022) Repeat MRI during Active Surveillance: Natural History of Prostatic Lesions and Upgrading Rates. BJU International, 129, 524-533.
https://doi.org/10.1111/bju.15623
[40] Nguyen, T.A., Fourcade, A., Zambon, A., et al. (2023) Optimal PSA Density Threshold and Predictive Factors for the Detection of Clinically Significant Prostate Cancer in Patient with a PI-RADS 3 Lesion on MRI. Urologic Oncology: Seminars and Original Investigations, 41, 354.e11-354.e18.
https://doi.org/10.1016/j.urolonc.2023.05.005
[41] Wang, C., Yuan, L., Shen, D., et al. (2022) Combination of PI-RADS Score and PSAD Can Improve the Diagnostic Accuracy of Prostate Cancer and Reduce Unnecessary Prostate Biopsies. Frontiers in Oncology, 12, Article 1024204.
https://doi.org/10.3389/fonc.2022.1024204
[42] Moore, C.M., Giganti, F., Albertsen, P., et al. (2017) Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer: The PRECISE Recommendations—A Report of a European School of Oncology Task Force. European Urology, 71, 648-655.
https://doi.org/10.1016/j.eururo.2016.06.011
[43] Bhanji, Y., Mamawala, M., De La Calle, C.M., et al. (2023) Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) Magnetic Resonance Imaging Scoring to Predict Clinical Outcomes in Active Surveillance for Grade Group 1 Prostate Cancer. Urology, 180, 194-199.
https://doi.org/10.1016/j.urology.2023.07.019
[44] Caglic, I., Sushentsev, N., Gnanapragasam, V.J., et al. (2021) MRI-Derived PRECISE Scores for Predicting Pathologically-Confirmed Radiological Progression in Prostate Cancer Patients on Active Surveillance. European Radiology, 31, 2696-2705.
https://doi.org/10.1007/s00330-020-07336-0
[45] Aerts, J., Hendrickx, S., Berquin, C., et al. (2023) Clinical Application of the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation Score for Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer. European Urology Open Science, 56, 39-46.
https://doi.org/10.1016/j.euros.2023.08.006
[46] O’connor, L.P., Wang, A.Z., Yerram, N.K., et al. (2021) Changes in Magnetic Resonance Imaging Using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation Criteria to Detect Prostate Cancer Progression for Men on Active Surveillance. European Urology Oncology, 4, 227-234.
https://doi.org/10.1016/j.euo.2020.09.004
[47] Silver, D.A., Pellicer, I., Fair, W.R., et al. (1997) Prostate-Specific Membrane Antigen Expression in Normal and Malignant Human Tissues. Clinical Cancer Research, 3, 81-85.
[48] Bostwick, D.G., Pacelli, A., Blute, M., et al. (1998) Prostate Specific Membrane Antigen Expression in Prostatic Intraepithelial Neoplasia and Adenocarcinoma: A Study of 184 Cases. Cancer, 82, 2256-2261.
https://doi.org/10.1002/(SICI)1097-0142(19980601)82:11<2256::AID-CNCR22>3.0.CO;2-S
[49] Eiber, M., Weirich, G., Holzapfel, K., et al. (2016) Simultaneous 68Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. European Urology, 70, 829-836.
https://doi.org/10.1016/j.eururo.2015.12.053
[50] Borque-Fernando, Á., Rubio-Briones, J., Esteban, L.M., et al. (2019) Role of the 4Kscore Test as a Predictor of Reclassification in Prostate Cancer Active Surveillance. Prostate Cancer and Prostatic Diseases, 22, 84-90.
https://doi.org/10.1038/s41391-018-0074-5
[51] Lin, D.W., Newcomb, L.F., Brown, M.D., et al. (2017) Evaluating the Four Kallikrein Panel of the 4Kscore for Prediction of High-Grade Prostate Cancer in Men in the Canary Prostate Active Surveillance Study. European Urology, 72, 448-454.
https://doi.org/10.1016/j.eururo.2016.11.017
[52] Eure, G., Germany, R., Given, R., et al. (2017) Use of a 17-Gene Prognostic Assay in Contemporary Urologic Practice: Results of an Interim Analysis in an Observational Cohort. Urology, 107, 67-75.
https://doi.org/10.1016/j.urology.2017.02.052
[53] Tosoian, J.J., Patel, H.D., Mamawala, M., et al. (2017) Longitudinal Assessment of Urinary PCA3 for Predicting Prostate Cancer Grade Reclassification in Favorable-Risk Men during Active Surveillance. Prostate Cancer and Prostatic Diseases, 20, 339-342.
https://doi.org/10.1038/pcan.2017.16
[54] Cantiello, F., Russo, G.I., Cicione, A., et al. (2016) PHI and PCA3 Improve the Prognostic Performance of PRIAS and Epstein Criteria in Predicting Insignificant Prostate Cancer in Men Eligible for Active Surveillance. World Journal of Urology, 34, 485-493.
https://doi.org/10.1007/s00345-015-1643-z
[55] Cantiello, F., Russo, G.I., Ferro, M., et al. (2015) Prognostic Accuracy of Prostate Health Index and Urinary Prostate Cancer Antigen 3 in Predicting Pathologic Features after Radical Prostatectomy. Urologic Oncology: Seminars and Original Investigations, 33, 163.e15-163.e23.
https://doi.org/10.1016/j.urolonc.2014.12.002
[56] Alshalalfa, M., Verhaegh, G.W., Gibb, E.A., et al. (2017) Low PCA3 Expression Is a Marker of Poor Differentiation in Localized Prostate Tumors: Exploratory Analysis from 12,076 Patients. Oncotarget, 8, 50804-50813.
https://doi.org/10.18632/oncotarget.15133
[57] Kornberg, Z., Cooperberg, M.R., Cowan, J.E., et al. (2019) A 17-Gene Genomic Prostate Score as a Predictor of Adverse Pathology in Men on Active Surveillance. Journal of Urology, 202, 702-709.
https://doi.org/10.1097/JU.0000000000000290
[58] Agrawal, V., Ma, X., Hu, J.C., et al. (2021) Active Surveillance for Men with Intermediate Risk Prostate Cancer. Journal of Urology, 205, 115-121.
https://doi.org/10.1097/JU.0000000000001241
[59] Eastham, J.A., Boorjian, S.A. and Kirkby, E. (2022) Clinically Localized Prostate Cancer: AUA/ASTRO Guideline. Journal of Urology, 208, 505-507.
https://doi.org/10.1097/JU.0000000000002854