组织多普勒成像在儿童疾病心脏功能评价的意义
Significance of Tissue Doppler Imaging in Evaluating Cardiac Function in Children
DOI: 10.12677/acm.2024.1441109, PDF, HTML, XML, 下载: 34  浏览: 55 
作者: 刘 杰, 谭利平*:重庆医科大学附属儿童医院急诊医学科,国家儿童健康与疾病临床研究中心,儿童发育疾病研究教育部重点实验室,儿童发育重大疾病国家国际合作基地,儿科学重庆市重点实验室,重庆
关键词: 组织多普勒成像儿科心脏功能评价Tissue Doppler Imaging Pediatric Cardiac Function Evaluation
摘要: 组织多普勒成像(TDI)通过多普勒频移来定量描述心肌的运动,常用于测量整体和区域心肌舒张和收缩功能、心室和心房功能。自1989年被首次描述后,TDI在心血管领域中的应用越来越广泛,最近的大量研究表明,TDI测量可作为一种有用的预后和诊断工具。目前TDI用于分析成人心功能已逐步成熟,但评价儿童心功能的研究及应用仍显滞后。本文对组织多普勒成像的技术原理以及其在儿童疾病心脏功能评价的临床应用现状和潜在的发展作一综述。
Abstract: Tissue Doppler imaging (TDI) quantitatively describes the motion of the myocardium by Doppler shift and is commonly used to measure global and regional myocardial diastolic and systolic function, ventricular and atrial function. Since it was first described in 1989, TDI has become more widely used in the cardiovascular field, and a large number of recent studies have shown that TDI measurement can be used as a useful prognostic and diagnostic tool. At present, TDI has been gradually mature for the analysis of adult cardiac function, but the research and application of evaluating cardiac function in children are still lagging behind. This article reviews the technical principles of tissue Doppler imaging and its clinical application and potential development in the evaluation of cardiac function in children.
文章引用:刘杰, 谭利平. 组织多普勒成像在儿童疾病心脏功能评价的意义[J]. 临床医学进展, 2024, 14(4): 941-947. https://doi.org/10.12677/acm.2024.1441109

1. TDI (Tissue Doppler Imaging)的概念

1.1. TDI工作原理

TDI源于传统的超声心动图技术,以多普勒原理为基础,通过捕获心肌收缩和舒张运动,提供心肌功能的定量测量。传统的多普勒系统依靠高通滤波器提取血流引起的高速低频信号。而TDI通过反转信号处理,采用低通滤波器将高速、低频的血流信号滤过,将低速高频的心肌组织运动增强,从而显示心肌室壁运动 [1] 。

1.2. TDI显示模式

频谱型TDI (PWTDI):PWTDI测量单个节段的纵向心肌峰值速度,常在心尖四腔心切面下测量。PWTDI的优势在于可以实时检测心肌速度,但缺乏在单一视图中对多个节段进行成像的能力以及角度依赖性和无法区分主动和被动运动。从PW TDI中获得的几个指数(s’, e’, a’)同时具有诊断及预后价值。

彩色模式TDI (CTDI):使用CTDI,将心肌速度的颜色编码表示叠加在2D灰度上,以显示心肌运动的方向和速度。CTDI的一些优点包括提高了细节分辨率以及能够在单一视图中评估多个节段 [2] 。与PWTDI不同,CTDI得到的速度是平均速度,比经PWTDI得到的速度降低约25%。

三维模式TDI (3-DTDI):是近年来TDI技术的新进展。它基于实时容积成像,能够从一个心动周期采集数据,并将图像投射为在线实时显示。其从任何空间角度可视化三维心脏结构和动态运动图像的能力提供了对心腔容积及其功能的总体评价,缺陷在于成像图像质量差以及数据采集和分析所需的时间很长,有时会导致时间和空间配准错误 [2] 。

2. 频谱型TDI评价心脏功能指标

一个心动周期内的TDI信号有三个峰值,一个正收缩峰值和两个负舒张峰值。正收缩波(s’速度)代表心肌收缩,负波代表舒张早期心肌舒张(e’速度)和舒张晚期心房主动收缩(a’速度)。

2.1. 收缩功能指标

心脏收缩时,心底向心尖移动,心肌的运动幅度与收缩功能呈正比 [3] ,因此纵向纤维在很大程度上负责长轴运动。Yu等 [4] 发现,二尖瓣环收缩期峰值速度(s’)能够反映左心室的长轴收缩运动。Gulati等 [5] 证实s’速度与左室射血分数(LVEF)有良好的相关性,s’ (6个基底段的平均值) > 5.4 cm/s识别正常LVEF的灵敏度为88%,特异性为97%。Alam等 [6] 研究得出了类似的结论,s’ > 7.5 cm/s预测LVEF 50%的灵敏度为79%,特异性为88%。值得一提的是,早期心肌损伤常累及心内膜下纤维,特别是心肌缺血时,在短轴功能改变之前,长轴收缩受损明显,因此s'是心血管疾病患者左室收缩功能障碍的敏感指标,可比射血分数更敏感且准确地判断患者预后。例如高血压、冠状动脉疾病(CAD)、心肌病和心力衰竭,即使左室射血分数正常,仍会改变心内膜下纤维功能,从而导致s'速度降低 [7] [8] 。

2.2. 舒张功能指标

组织多普勒成像e’速度是舒张早期左心室舒张的指标,对容量负荷依赖小,e’速度可以通过心尖四腔切面的间隔或侧环测量。a’速度可用于评估心房功能,是心房整体功能的标志物,a’速度(间隔或侧壁)无显著变化。a’速度与左心房功能的其他指标相关,包括二尖瓣血流A波峰值速度、心房射血分数。此外,二尖瓣组织多普勒频谱(E/e’)被认为是肺毛细血管楔压的替代指标,E/e’的增高反映了肺毛细血管楔压的增加 [9] 。 [10] 在2016年欧美《超声心动图评价左心室舒张功能建议》中提出了E/e’、e’速度可作为评价左心室舒张功能异常的主要指标,也证明了其实用性。此外,年龄变化伴随着心血管系统的改变,因此评估心脏舒张功能时应考虑年龄因素。

2.3. 心脏整体功能指标

心肌性能指数(MPI)或Tei指数由Tei于1995年提出,是等容收缩时间(ICT)和等容舒张时间(IRT)持续时间之和与射血时间(ET)持续时间之比 [11] 。可以利用组织多普勒超声技术记录二尖瓣房室环心肌运动频谱测量Tei指数。MPI是在各种临床条件下评价心脏功能的有用工具,如心力衰竭、心肌梗死和心肌病等。MPI值越高表示心功能越差,而MPI值越低表示心功能越好 [12] 。MPI测量方法简便,重复性强,且不受心率、心室几何形态、前负荷的影响 [13] [14] ,但会受到年龄的影响,妊娠18周后,胎儿左右心室的Tei指数逐渐降低,3周岁后基本稳定不变 [15] 。

3. TDI在儿童疾病心脏功能评价中的应用

TDI作为一种非侵入性的超声方法,因更好的敏感度以及能够检测局部心肌功能,能更早检测出心肌损害,因此能对许多疾病实现早期预测及诊断,从而越来越被临床所重视及推广。在儿童常见心血管疾病及非心脏疾病心肌损害中,有关TDI的研究也越来越多,相信在不久的将来TDI在小儿疾病诊治过程中能够发挥更大的作用。

3.1. 心脏疾病

3.1.1. 先天性心脏病

先天性心脏病(CHD)是先天性畸形中最常见的一类,指的是出生时即存在的结构性心脏缺陷,会影响心脏的功能及循环。研究表明 [16] ,Tei指数是CHD患者心肌功能障碍的敏感标志。该指数可用于评估体循环和肺循环心室的功能,在这些患者的管理中至关重要。

3.1.2. 扩张性心肌病

扩张性心肌病(DCM)是最常见的一类心肌病,约占所有儿童心肌病的55%~60%,平均诊断年龄为2岁 [17] 。多项研究发现 [18] [19] [20] ,将健康儿童作为对照组,DCM组的组织多普勒衍生二尖瓣环收缩速度(S’波)显著低于对照组以及MPI显著高于对照组。Zairi等 [21] 发现,TAPSE、S’、Tei指数和RV外壁应变是非缺血性扩张型心肌病中主要心血管事件的独立预测因子,提示组织多普勒和斑点追踪超声心动图可帮助检测心脏功能的早期下降。

3.1.3. 肥厚性心肌病

肥厚性心肌病(HCM)是青少年运动猝死的最主要原因之一 [22] 。TDI提供了无创估计左心室流出道梯度和二尖瓣反流程度的机会 [23] 。在2项研究中 [24] [25] ,多普勒衍生的梯度与侵入性测量的梯度相当,改变了既往对HCM患者进行连续心导管插入术的长期做法。Nagueh [26] 等人也发现通过TDI测出的S’和e’速度降低能够早期识别HCM家族中青少年受试者的亚临床疾病,即使这些受试者尚未表现出左心室肥大。Hiroaki [27] 等人在后续的研究中也发现TDI测量的间隔E/e’值是无症状或轻度症状HCM患者发生不良心血管事件的独立超声心动图预测因子,并且建议间隔E/e’值应纳入HCM患者的临床管理,从而有助于对这些患者进行风险分层。

3.1.4. 限制性心肌病及缩窄性心包炎

缩窄性心包炎(CP)和限制性心肌病(RCM)之间的区别几十年来一直困扰着临床医生。由于这两种疾病都会导致舒张功能障碍,因此它们的临床表现可能重叠,TDI可用于区分这两种疾病 [28] 。Ha [29] 等人发现RCM患者的间隔e’速度降低,而CP患者的间隔e’速度表现为正常或升高,间隔e’ > 8 cm/s诊断CP的灵敏度为95%,特异性为96%。在另一项研究中,CP的平均内侧e’速度为12.9 cm/s,内侧e’ ≥ 9 cm/s对CP的阳性预测值为94%,内侧e’/外侧e’ ≥ 0.91的阳性预测值为95% [30] 。相反,在RCM中,二尖瓣内侧e’可能低至2至3 cm/s。Butz [31] 等人的研究中也得出了类似的结论,并且发现RCM患者的S'速度较CP患者有明显下降。

3.1.5. 心肌炎

心肌炎是指心肌的局限性或弥漫性的炎性病变为主要表现的疾病。心肌炎临床表现多样,可从无症状至出现严重心律失常、急性心功能不全、心源性休克甚至死亡,因此对患者进行及时的诊断及早期开始治疗就显得尤为重要。在Yadav等人 [32] 的研究中发现Tei在识别心肌受累患者优于射血分数和E/e’。后续的一项回顾性研究表明心肌炎患者的Tei值显著升高,尽管左心室收缩功能没有差异 [33] 。因此Tei可能是心肌炎患者初始诊断病情检查的有益补充。

3.2. 非原发心脏疾病的心脏损害

3.2.1. 川崎病

川崎病(KD)是儿童获得性心脏病的主要来源,急性期的标准治疗是静脉注射免疫球蛋白(IVIG),但部分患儿对IVIG无反应,最终需要重复给予IVIG或者选择二线治疗。因此,找到能够准确预测川崎病患者IVIG耐药的工具显得尤为重要,可以为临床治疗提供参考。Phadke [34] 等人发现川崎病IVIG耐药与敏感两组间经TDI测量的e’速度有显著差异。这说明TDI可能有早期识别IVIG耐药患者的潜力,应进行前瞻性研究以验证TDI在预测IVIG耐药性方面的有用性。

3.2.2. 脓毒症心肌病

脓毒症是目前导致儿童死亡的主要原因之一,脓毒性心肌病(SC)是重度脓毒症和脓毒性休克的常见并发症 [35] 。SC发生在超过40%的脓毒症患者中,并导致70%的脓毒症相关死亡。几十年来对SC的研究尚未发现SC背后的机制。早期诊断脓毒症心肌病可以帮助临床医生制定合适的液体复苏方案、恰当使用血管活性药物。目前,SC最被接受的心肌功能障碍的定义是基于左室射血分数 < 50%,但由于左室射血分数易受前、后负荷及心室腔大小的影响,因此,左室射血分数不是判断死亡率的敏感和特异性指标 [36] 。因此找到一种特异性强、灵敏度高的评价指标就非常重要。Landesberg等 [37] 发现s’与脓毒症心肌病死亡率相关。Weng等 [38] 发现,在脓毒症心肌病患者中,死亡组患者s’较存活组明显增高,通过ROC曲线发现s’以9 cm/s为临界值,预测90 d病死率的敏感度和特异度分别为75%和86%。尽管s’相比左室射血分数更易精确测量,但其仍具有负荷依赖性,尤其是对于后负荷。此外,持续性血管麻痹可能是造成s’升高的另一个因素,而持续性血管麻痹是导致患者死亡率高的重要原因。因此,单纯的s’也不是诊断脓毒症心肌病的理想指标。两项观察性研究发现E/e’升高是脓毒症患者院内死亡独立预测因素 [39] [40] 。 [41] 一项纳入14项儿童脓毒症研究的Mate分析显示,E/e’的增加及e’速度的减少与死亡率相关,提示左心室舒张功能不全可能在脓毒症疾病发展中有着重要意义。Nizamuddin [42] 等发现重度脓毒症或脓毒性休克的患者入住重症监护室后前24小时内MPI恶化与90天死亡率升高相关。临床工作中,超声心动图已成为临床诊断脓毒症心肌病不可或缺的工具,后续研究需进一步对超声心动图诊断标准进行统一,包括常规超声心动图、组织多普勒、斑点追踪超声心动图,进一步联合心肌标志物,从而增加超声心动图在脓毒症心肌病诊断及评估预后中的敏感度及特异度。

3.2.3. 急性细胞排斥反应

急性细胞排斥反应(ACR),在大多数情况下是无症状的,仍然是心脏移植(HTx)后患者的威胁。如果排斥反应为中度或重度,通常会加强免疫抑制治疗,称为TR-ACR。心内膜心肌活检(EMB)是ACR监测的首选方法,但其重复性差且可能出现并发症,因此找到一种非侵入性方法识别就显得尤为重要。Martín [43] 等人发现与既往超声数据相比,s’ + e值下降<2.7 cm/s,排除TR-ACR的阴性预测值为99%,提示组织多普勒速度是排除TR-ACR的有价值的标志物。

4. 局限性及展望

TDI作为近年来评估心功能的新工具,因更好的敏感度以及能够检测局部心肌的功能,在临床中的应用越来越广泛。但TDI也有其局限性。一方面TDI具有角度依赖性,如果取样角度超过20˚,则速度可能被低估,因此对操作者的熟练度有更高的要求;另外,在儿童领域缺乏大样本正常参考值测定,也限制了TDI在儿童中的临床应用。相信随着技术的进步,TDI评估心脏功能可望有着更广泛的应用前景,在未来有望成为一种常规的测量方法,同时联合负荷超声心动图或斑点跟踪超声心动图,结合心脏血生化指标,可以对区域和整体心肌功能进行更定量的评估,以更好地指导临床。

NOTES

*通讯作者。

参考文献

[1] Kadappu, K.K. and Thomas, L. (2015) Tissue Doppler Imaging in Echocardiography: Value and Limitations. Heart, Lung and Circulation, 24, 224-233.
https://doi.org/10.1016/j.hlc.2014.10.003
[2] Nashnoush, M., Chopra, C. and Sheikh, M. (2021) Tissue Doppler Imaging: An Overview. Preprints.org, Basel.
https://doi.org/10.20944/preprints202106.0652.v1
[3] 王晶, 谭睿, 於江泉, 等. 超声心动图在脓毒症心肌病中的应用进展[J]. 中华临床医师杂志(电子版), 2021, 15(6): 464-469.
[4] Yu, C.M., Sanderson, J.E., Marwick, T.H. and Oh, J.K. (2007) Tissue Doppler Imaging a New Prognosticator for Cardiovascular Diseases. Journal of the American College of Cardiology, 49, 1903-1914.
https://doi.org/10.1016/j.jacc.2007.01.078
[5] Gulati, V.K., Katz, W.E., Follansbee, W.P., et al. (1996) Mitral Annular Descent Velocity by Tissue Doppler Echocardiography as Index of Global Left Ventricular Function. The American Journal of Cardiology, 77, 979-984.
https://doi.org/10.1016/S0002-9149(96)00033-1
[6] Alam, M., Wardell, J., andersson, E., et al. (2000) Effects of First Myocardial Infarction on Left Ventricular Systolic and Diastolic Function with the Use of Mitral Annular Velocity Determined by Pulsed Wave Doppler Tissue Imaging. Journal of the American Society of Echocardiography, 13, 343-352.
https://doi.org/10.1016/S0894-7317(00)70003-4
[7] Dini, F.L., Galderisi, M., Nistri, S., et al. (2013) Abnormal Left Ventricular Longitudinal Function Assessed by Echocardiographic and Tissue Doppler Imaging Is a Powerful Predictor of Diastolic Dysfunction in Hypertensive Patients: The SPHERE Study. International Journal of Cardiology, 168, 3351-3358.
https://doi.org/10.1016/j.ijcard.2013.04.122
[8] Correale, M., Totaro, A., Ieva, R., Ferraretti, A., Musaico, F. and Biase, M.D. (2012) Tissue Doppler Imaging in Coronary Artery Diseases and Heart Failure. Current Cardiology Reviews, 8, 43-53.
https://doi.org/10.2174/157340312801215755
[9] Ommen, S.R., Nishimura, R.A., Appleton, C.P., et al. (2000) Clinical Utility of Doppler Echocardiography and Tissue Doppler Imaging in the Estimation of Left Ventricular Filling Pressures: A Comparative Simultaneous Doppler-Cathe-terization Study. Circulation, 102, 1788-1794.
https://doi.org/10.1161/01.CIR.102.15.1788
[10] Nagueh, S.F., Smiseth, O.A., et al. (2016) Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 29, 277-314.
[11] Oliveira, M., Dias, J.P. and Guedes-Martins, L. (2022) Fetal Cardiac Function: Myocardial Performance Index. Current Cardiology Reviews, 18, Article ID: e271221199505.
https://doi.org/10.2174/1573403X18666211227145856
[12] Askin, L., Yuce, E.İ. and Tanriverdi, O. (2023) Myocardial Performance Index and Cardiovascular Diseases. Echocardiography, 40, 720-725.
https://doi.org/10.1111/echo.15628
[13] Zdemir, K., Balci, S., Duzenli, M.A., et al. (2010) Effect of Preload and Heart Rate on the Doppler and Tissue Doppler-Derived Myocardial Performance Index. Clinical Cardiology, 30, 342-348.
https://doi.org/10.1002/clc.20109
[14] Gerede, D.M., Turhan, S., Kaya, C.T., et al. (2015) Effects of Hemodialysis on Tei Index: Comparison between Flow Doppler and Tissue Doppler Imaging. Echocardiography, 32, 1520-1526.
https://doi.org/10.1111/echo.12895
[15] Eto, G., Ishii, M., Tei, C., Tsutsumi, T., Akagi, T. and Kato, H. (1999) Assessment of Global Left Ventricular Function in Normal Children and in Children with Dilated Cardiomyopathy. Journal of the American Society of Echocardiography, 12, 1058-1064.
https://doi.org/10.1016/S0894-7317(99)70102-1
[16] Márquez-González, H., Vargas, M.H., Yáñez-Gutiérrez, L., Almeida-Gutiérrez, E. and Garduño-Espinosa, J. (2018) Tei Index Is the Best Echocardiographic Parameter for Assessing Right Ventricle Function in Patients with Unrepaired Congenital Heart Diseases with Outflow Tract Obstruction. Frontiers in Pediatrics, 6, Article 181.
https://doi.org/10.3389/fped.2018.00181
[17] Lipshultz, S.E., Cochran, T.R., Briston, D.A., Brown, S.R., Sambatakos, P.J., Miller, T.L., Carrillo, A.A., Corcia, L., Sanchez, J.E., Diamond, M.B., Freundlich, M., Harake, D., Gayle, T., Harmon, W.G., Rusconi, P.G., Sandhu, S.K. and Wilkinson, J.D. (2013) Pediatric Cardiomyopathies: Causes, Epidemiology, Clinical Course, Preventive Strategies and Therapies. Future Cardiology, 9, 817-848.
https://doi.org/10.2217/fca.13.66
[18] McMahon, C.J., Nagueh, S.F., Eapen, R.S., Dreyer, W.J., Finkelshtyn, I., Cao, X., Eidem, B.W., Bezold, L.I., Denfield, S.W., Towbin, J.A. and Pignatelli, R.H. (2004) Echocardiographic Predictors of Adverse Clinical Events in Children with Dilated Cardiomyopathy: A Prospective Clinical Study. Heart, 90, 908-915.
https://doi.org/10.1136/hrt.2003.020966
[19] Mohammed, A. and Friedberg, M.K. (2008) Feasibility of a New Tissue Doppler Based Method for Comprehensive Evaluation of Left-Ventricular Intra-Ventricular Mechanical Dyssynchrony in Children with Dilated Cardiomyopathy. Journal of the American Society of Echocardiography, 21, 1062-1067.
https://doi.org/10.1016/j.echo.2008.06.003
[20] Al-Biltagi, M., Elrazaky, O., Mawlana, W., Srour, E. and Shabana, A.H. (2022) Tissue Doppler, Speckling Tracking and Four-Dimensional Echocardiographic Assessment of Right Ventricular Function in Children with Dilated Cardiomyopathy. World Journal of Clinical Pediatrics, 11, 71-84.
https://doi.org/10.5409/wjcp.v11.i1.71
[21] Zairi, I., Mzoughi, K., Jabeur, M., Jnifene, Z., Ben Moussa, F., Kamoun, S., Fennira, S. and Kraiem, S. (2017) Right Ventricular Systolic Echocardiographic Parameters in Dilated Cardiomyopathy and Prognosis. La Tunisie Médicale, 95, 87-91.
[22] Haland, T.F. and Edvardsen, T. (2020) The Role of Echocardiography in Management of Hypertrophic Cardiomyopathy. Journal of Echocardiography, 18, 77-85.
https://doi.org/10.1007/s12574-019-00454-9
[23] Maron, B.J. and Maron, M.S. (2016) The Remarkable 50 Years of Imaging in HCM and How It Has Changed Diagnosis and Management: From M-Mode Echocardiography to CMR. JACC: Cardiovascular Imaging, 9, 858-872.
https://doi.org/10.1016/j.jcmg.2016.05.003
[24] Sasson, Z., Yock, P.G., Hatle, L.K., et al. (1988) Doppler Echocardiographic Determination of the Pressure Gradient in Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 11, 752-756.
https://doi.org/10.1016/0735-1097(88)90207-0
[25] Panza, J.A., Petrone, R.K., Fananapazir, L., et al. (1992) Utility of Continuous Wave Doppler Echocardiography in the Noninvasive Assessment of Left Ventricular Outflow Tract Pressure Gradient in Patients with Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 19, 91-99.
https://doi.org/10.1016/0735-1097(92)90057-T
[26] Nagueh, S.F., et al. (2003) Tissue Doppler Imaging Predicts the Development of Hypertrophic Cardiomyopathy in Subjects with Subclinical Disease. Circulation, 108, 395-398.
https://doi.org/10.1161/01.CIR.0000084500.72232.8D
[27] Hiroaki, K., Toru, K., Kayo, H., et al. (2013) Tissue Doppler Imaging and Prognosis in Asymptomatic or Mildly Symptomatic Patients with Hypertrophic Cardiomyopathy. European Heart Journal-Cardiovascular Imaging, 14, 544-549.
https://doi.org/10.1093/ehjci/jes200
[28] Lloyd, J.W., Anavekar, N.S., Oh, J.K. and Miranda, W.R. (2023) Multimodality Imaging in Differentiating Constrictive Pericarditis from Restrictive Cardiomyopathy: A Comprehensive Overview for Clinicians and Imagers. Journal of the American Society of Echocardiography, 36, 1254-1265.
https://doi.org/10.1016/j.echo.2023.08.016
[29] Ha, J.W., Ommen, S.R., Tajik, A.J., et al. (2004) Differentiation of Constrictive Pericarditis from Restrictive Cardiomyopathy Using Mitral Annular Velocity by Tissue Doppler Echocardiography. American Journal of Cardiology, 94, 316-319.
https://doi.org/10.1016/j.amjcard.2004.04.026
[30] Welch, T.D., Ling, L.H., Espinosa, R.E., et al. (2014) Echocardiographic Diagnosis of Constrictive Pericarditis Mayo Clinic Criteria. Circulation: Cardiovascular Imaging, 7, 526-534.
https://doi.org/10.1161/CIRCIMAGING.113.001613
[31] Butz, T., Piper, C., Langer, C., et al. (2010) Diagnostic Superiority of a Combined Assessment of the Systolic and Early Diastolic Mitral Annular Velocities by Tissue Doppler Imaging for the Differentiation of Restrictive Cardiomyopathy from Constrictive Pericarditis. Clinical Research in Cardiology, 99, 207-215.
https://doi.org/10.1007/s00392-009-0106-1
[32] Yadav, D.K., Choudhary, S., Gupta, P.K., Beniwal, M.K., Agarwal, S., Shukla, U., Dubey, N.K., Sankar, J. and Kumar, P. (2013) The Tei Index and Asymptomatic Myocarditis in Children with Severe Dengue. Pediatric Cardiology, 34, 1307-1313.
https://doi.org/10.1007/s00246-013-0639-y
[33] Mirna, M., Schmutzler, L., Vogl, F., Topf, A., Hoppe, U.C. and Lichtenauer, M. (2022) Tei Index Is a Useful Adjunctive Tool in the Diagnostic Workup of Patients with Acute Myocarditis. Journal of Cardiovascular Development and Disease, 9, Article 283.
https://doi.org/10.3390/jcdd9080283
[34] Phadke, D., Patel, S.S., Dominguez, S.R., Heizer, H., anderson, M.S., Glode, M.P. and Jone, P.N. (2015) Tissue Doppler Imaging as a Predictor of Immunoglobulin Resistance in Kawasaki Disease. Pediatric Cardiology, 36, 1618-1623.
https://doi.org/10.1007/s00246-015-1206-5
[35] Ehrman, R.R., Sullivan, A.N., Favot, M.J., Sherwin, R.L., Reynolds, C.A., Abidov, A. and Levy, P.D. (2018) Pathophysiology, Echocardiographic Evaluation, Biomarker Findings, and Prognostic Implications of Septic Cardiomyopathy: A Review of the Literature. Critical Care, 22, Article No. 112.
https://doi.org/10.1186/s13054-018-2043-8
[36] Sevilla Berrios, R.A., O’Horo, J.C., Velagapudi, V. and Pulido, J.N. (2014) Correlation of Left Ventricular Systolic Dysfunction Determined by Low Ejection Fraction and 30-Day Mortality in Patients with Severe Sepsis and Septic Shock: A Systematic Review and Meta-Analysis. Journal of Critical Care, 29, 495-499.
https://doi.org/10.1016/j.jcrc.2014.03.007
[37] Landesberg, G., Gilon, D., Meroz, Y., et al. (2012) Diastolic Dysfunction and Mortality in Severe Sepsis and Septic Shock. European Heart Journal, 33, 895-903.
https://doi.org/10.1093/eurheartj/ehr351
[38] Weng, L., Liu, Y.T., Du, B., Zhou, J.F., Guo, X.X., Peng, J.M., Hu, X.Y., Zhang, S.Y., Fang, Q. and Zhu, W.L. (2012) The Prognostic Value of Left Ventricular Systolic Function Measured by Tissue Doppler Imaging in Septic Shock. Critical Care, 16, Article No. R71.
https://doi.org/10.1186/cc11328
[39] Sturgess, D.J., Marwick, T.H., Joyce, C., et al. (2010) Prediction of Hospital Outcome in Septic Shock: A Prospective Comparison of Tissue Doppler and Cardiac Biomarkers. Critical Care, 14, Article No. R44.
https://doi.org/10.1186/cc8931
[40] Rolando, G., Espinoza, E., Avid, E., et al. (2016) Prognostic Value of Ventricular Diastolic Dysfunction in Patients with Severe Sepsis and Septic Shock. Revista Brasileira de Terapia Intensiva, 27, 333-339.
https://doi.org/10.5935/0103-507X.20150057
[41] Sanfilippo, F., La Rosa, V., Grasso, C., Santonocito, C., Minardi, C., Oliveri, F., Iacobelli, R. and Astuto, M. (2021) Echo-cardiographic Parameters and Mortality in Pediatric Sepsis: A Systematic Review and Meta-Analysis. Pediatric Critical Care Medicine, 22, 251-261.
https://doi.org/10.1097/PCC.0000000000002622
[42] Nizamuddin, J., Mahmood, F., Tung, A., Mueller, A., Brown, S.M., Shaefi, S., O’Connor, M., Talmor, D. and Shahul, S. (2017) Interval Changes in Myocardial Performance Index Predict Outcome in Severe Sepsis. Journal of Cardiothoracic and Vascular Anesthesia, 31, 957-964.
https://doi.org/10.1053/j.jvca.2016.11.007
[43] Ruiz Ortiz, M., Rodríguez Diego, S., Delgado Ortega, M., Sánchez Fernández, J.J., Ortega Salas, R., Carnero Montoro, L., Carrasco Ávalos, F., López Aguilera, J., López Granados, A., Arizón Del Prado, J.M., Romo Peñas, E., Paredes Hurtado, N., Oneto Fernández, J., Pan, M. and Mesa Rubio, D. (2020) Tissue Doppler Velocities for Ruling Out Rejection in Heart Transplant Recipients in the Context of Myocardial Strain Imaging: A Multivariate, Prospective, Single-Center Study. The International Journal of Cardiovascular Imaging, 36, 1455-1464.
https://doi.org/10.1007/s10554-020-01843-3