香烟烟雾暴露对孕妇及胎儿生长发育危害的研究进展
Research Progress on the Harm of Cigarette Smoke Exposure to the Growth and Development of Pregnant Women and Fetuses
DOI: 10.12677/acm.2024.1441101, PDF, HTML, XML, 下载: 29  浏览: 46 
作者: 丁付群, 黄伟路:浙江师范大学生命科学学院,浙江 金华
关键词: 香烟烟雾健康影响孕妇后代影响Cigarette Smoke Health Effects Pregnant Women Offspring Effects
摘要: 香烟烟雾中含的有害物质,可能造成多种疾病的发生,尤其是对胎儿健康产生影响的机制还不完全清楚。本综述主要介绍香烟中的主要有害成分对健康的危害影响。孕妇吸入香烟烟雾产生的不良影响可能传递给胎儿,最后对孕妇吸入香烟烟雾对后代的脑、肺、肾、心脏、肝脏等器官造成的影响研究进展进行综述。期望未来人们对香烟烟雾的危害引起重视,为孕妇提供更健康的生活环境。
Abstract: The harmful substances contained in cigarette smoke may cause a variety of diseases; especially the mechanism of the impact on fetal health is not completely clear. This review mainly introduces the harmful effects of the main harmful components in cigarettes on health. The adverse effects of cigarette smoke inhalation by pregnant women may be passed on to the fetus. Finally, the research progress on the effects of cigarette smoke inhalation by pregnant women on the brain, lung, kidney, heart, liver and other organs of offspring is reviewed. It is expected that people will pay attention to the harm of cigarette smoke in the future so as to provide a healthier living environment for pregnant women.
文章引用:丁付群, 黄伟路. 香烟烟雾暴露对孕妇及胎儿生长发育危害的研究进展[J]. 临床医学进展, 2024, 14(4): 875-885. https://doi.org/10.12677/acm.2024.1441101

1. 引言

吸烟已知会危害人体健康,且受到世界各国的重视 [1] 。全球有超过10亿吸烟者 [2] ,而中国吸烟人数超过3亿 [3] 。2021年,世界卫生组织估计,每年有800万人因吸烟或咀嚼烟草导致的相关疾病死亡,另外约有130万的非吸烟者死于与二手烟相关的疾病 [4] 。香烟烟雾包含的多种有害化合物几乎对身体的每个器官都有损伤作用 [5] ,可能增加人患肺癌 [6] 、肝癌 [7] 、肾病 [8] 、心脏疾病等相关疾病的风险 [9] 。如吸烟会增加慢性呼吸道疾病,例如慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD) [10] 、哮喘 [11] 、尘肺病 [12] 、间质性肺病 [13] 和结节病 [14] 等疾病的发病率和死亡风险 [15] [16] 。2019年慢性呼吸道疾病已成为全球第三大死因,导致约400万人死亡 [17] 。所以吸烟对于疾病的发生是一个重要的危险因素之一,了解其生理损伤机制十分重要。

孕妇接触二手烟比主动吸烟者更常见 [18] 。孕妇会因为家庭成员有吸烟者而长期暴露于二手烟环境 [19] 。在中国孕妇吸烟者的比例低,但是孕妇暴露于二手烟的比率超过50% [20] 。孕妇在孕期吸烟会增加流产的机率 [21] 或者胎儿早产 [22] 。也会造成新生儿出生体重低 [23] ,还会增加新生儿畸形的概率 [24] [25] 。因此了解怀孕期间吸入香烟烟雾对胎儿发育产生影响的生理机制非常重要。本综述将介绍目前香烟烟雾中有害物质对机体产生危害影响,并阐述目前孕妇吸入香烟烟雾对胎儿发育产生影响的研究进展

2. 烟草烟雾中的有害物质

烟草烟雾中已鉴定出有7000多种复杂的化学物质 [26] [27] 。主要有害物质包括,尼古丁(nicotine),多环芳烃类化合物(polycyclic aromatic hydrocarbons, PAHs),焦油(Tar),一氧化碳(Carbon monoxide)等。这些有害物质可直接伤害肺部功能 [28] ,也可经由肺部吸收进入血液循环传送而损害身体各个器官 [29] 。香烟中主要有害物质的影响简述如下。

2.1. 尼古丁

尼古丁(nicotine)是一种天然存在于许多植物中的生物碱,以两种对映异构体(S)-nicotine和(R)-nicotine的形式存在 [30] 。烟草中含有大量(S)-nicotine,尼古丁总含量中只有0.1%~0.6%是(R)-nicotine [31] 。尼古丁属于弱碱,解离常数pKa为8.0,它以69%的电离和31%的自由形式结合,酸度会影响尼古丁的吸收,在pH值为5.5~6.0的酸性下,尼古丁呈电离形式,不被组织吸收。因此,从香烟烟雾中释放的尼古丁呈电离形式,不会穿过膜,从而阻止其口腔吸收,而肺泡液的pH值为7.4,可将尼古丁转化为结合形式,促进快速吸收 [32] 。人吸一口烟后,高水平的尼古丁在10~20秒内到达大脑,比静脉注射更快 [33] 。尼古丁被吸收后,进入血液,可广泛分布于身体组织,根据对吸烟者的尸体样本检测发现,尼古丁在肝脏、肾脏、脾脏和肺中的浓度最高,在脂肪组织中的浓度最低 [34] 。尼古丁是烟草中的主要精神活性物质,它能够和位于整个大脑和周围神经系统中的烟碱乙酰胆碱受体(nicotinic acetylcholine receptors, nAChRs)结合 [35] 。烟碱乙酰胆碱受体几乎在大脑的每个区域表达 [36] ,包括突触前和突触后 [37] ,并且可以在轴突末梢、轴突、树突 [36] [38] 和体细胞 [39] 上表达。当尼古丁与烟碱乙酰胆碱受体结合后,尼古丁刺激会使大脑伏隔核(nucleus accumbens, NAcc)中的多巴胺分泌升高 [40] ,这会刺激“奖励通路(reward pathway)”,使得对尼古丁摄入的欲望增加 [41] [42] ,促使人不断的吸烟来得到满足,长期发展下去则会对香烟成瘾 [43] 。此外尼古丁和肺部烟碱乙酰胆碱受体结合可以刺激包括RAS通路在内的多种信号通路,导致细胞增殖增加,通过激活细胞生长途径促进肺癌的发展 [44] [45] 。而急性尼古丁中毒的症状表现为恶心、呕吐、头痛、腹部绞痛、呼吸困难、体温异常、面色苍白、腹泻、发冷、血压和心率波动、出汗和流涎增加 [46] [47] 。

对于怀孕妇女,尼古丁被母体吸收后不仅直接对身体产生作用,还有可能通过母体如胎盘 [48] 和母乳 [49] 传递到胎儿体内产生作用。尼古丁很容易穿过胎盘屏障,有证据表明尼古丁在胎儿血清和羊水中的积累浓度略高于母体血清 [48] 。但目前对于尼古丁对胎儿造成的生理影响及可能机制目前仍不清楚。

2.2. 多环芳烃类化合物

香烟烟雾中含有多种多环芳烃类化合物(polycyclic aromatic hydrocarbons, PAHs),尤其包含致癌的多环芳烃 [50] ,主要包括苯并芘(Benzo[a]pyrenes, BaP)、萘(naphthalene)、屈烯(chrysene)等 [50] 。吸烟经滤嘴吸入的烟雾称为主流烟雾,而香烟燃烧时释放到空气中烟雾称为侧流烟雾,抽一支香烟摄入约20~40 ng 的苯并芘 [51] ,研究发现在侧流烟雾含有的苯并芘(BaP)约为103 ng/支,是主流烟雾(10.9 ng/支)的10倍 [52] ,因此推测侧流烟雾对身体的危害风险可能更大。苯并芘(BaP)进入体内后,除了小部分以原始形式在粪便中排泄外,大部分会积聚在胃肠道、附睾脂肪、肺、肝、脑和肾中,而且它具有高度亲脂性,可以很容易地通过质膜被吸收到细胞中 [53] 。大多数多环芳烃本身没有基因毒性,它们需要代谢成与DNA反应的环氧化物,从而诱导基因毒性损伤 [54] 。

多环芳烃化合物(包含BaP)在生物体内的代谢过程可概括为,首先经胞色素P450 (cytochrome P450)中的CYP1家族(CYP1A1,CYP1A2,CYP1B1等)和微粒体环氧化物水解酶的作用下将多环芳烃转化为一些酚类、苯酚二醇、二氢二醇、醌类和反应性二醇环氧化物对映异构体 [55] ,而苯并芘(BaP)在这一过程中可能会形成环氧化物B[a]P-7,8-epoxide,然后经过环氧化物水解酶产生二醇B[a]P-7,8-diol,这一产物在经CYP450酶的再次催化作用下产生具有反应活性的二醇环氧化物(BPDE),它能够和DNA的鸟嘌呤反应结合,形成DNA加合物(DNA adducts),大量持续的产生DNA加合物可能会在DNA复制时引起核苷酸的不匹配 [56] ,从而这些DNA损伤的作用可能造成基因的突变和异常基因表达,可能造成细胞癌变的发生 [57] 。

2.3. 一氧化碳和其他有害物质

烟草燃烧,产生的一氧化碳是潜在的有害物质暴露来源,对身体损害严重时会造成缺氧反应 [58] 。人类血红蛋白结合一氧化碳的亲和力比氧气高200到250倍 [59] ,当吸入大量一氧化碳时会降低血红蛋白的携氧能力并导致组织细胞缺氧 [60] 。一氧化碳和血红蛋白结合产生的碳氧血红蛋白(carboxy-hemoglobin, COHb)浓度在吸烟者中可能高达10%,而在正常人中则为1%至3% [59] ,当COHb浓度超过10%可能会出现头痛,呼吸困难的症状 [61] 。

烟草燃烧产生的烟雾中的金属和重金属通常被认为以离子形式存在,但也可能以气态元素形式存在,如汞 [62] 。如果土地受到的污染严重可能会增加植物体内重金属的含量,有研究发现中国卷烟烟草中的砷、镉和铅浓度比加拿大卷烟中的含量高出两到三倍 [63] 。据报道,患有慢性阻塞性肺疾病的研究患者呼出气冷凝物中的铝浓度明显高于不吸烟的健康对照受试者。当慢性阻塞性肺病患者被细分为吸烟者与戒烟者和非吸烟者时,吸烟者呼出的呼气冷凝物中铝的浓度明显更高 [64] 。因此香烟烟雾中的重金属也是对身体造成损害的一个原因之一。

3. 香烟烟雾暴露对孕妇和胎儿的危害作用

3.1. 流行病学的研究

近年来,香烟中的有害物质对胎儿健康的影响也被广泛关注 [25] 。孕妇主动吸烟或者被动吸烟可能都会对自身和胎儿的健康产生影响 [65] 。孕妇在孕期吸烟会增加流产的机率 [21] 或者胎儿早产 [22] 。也会造成新生儿出生体重低 [23] ,还会增加新生儿畸形的概率 [24] [25] 。包含面部缺陷 [66] ,如唇裂和腭裂 [67] 。肌肉和骨骼缺陷 [68] 和颅缝早闭 [69] ,并增加新生儿出现先天性心脏缺陷的风险 [70] ,以及新生儿猝死 [71] 。然而研究表明孕妇在孕期接触香烟对胎儿产生的不良影响,目前并没有可行的治疗方法,这种影响可能将会伴随其终身 [72] 。

3.2. 孕妇暴露香烟烟雾对胎盘的影响

胎盘在妊娠期间作为胎儿和母体环境之间物质交换的桥梁 [73] 。孕妇孕期接触二手烟可能会引发胎盘发育不良 [74] ,引起诸多并发症,例如前置胎盘、胎盘早剥、产前出血、流产、异位妊娠、宫内生长受限 [75] 。孕妇妊娠晚期吸烟与足月胎盘基地膜扩张,绒毛胶原蛋白含量增加,血管形成减少有关 [76] 。这些对胎盘造成的不良影响也会间接影响胎儿的发育。且产前暴露于环境烟草烟雾的影响与孕妇主动吸烟的影响相似 [65] 。

4. 香烟烟雾对胎儿的影响

香烟烟雾对发育的生物体如婴儿和发育中的胎儿的危害更大,孕妇接触香烟烟雾后所生的婴儿出生体重较低 [22] [77] [78] ,头围较小 [79] ,体长较短 [80] [81] 。孕妇香烟烟雾暴露会影响胎儿的发育,然而其原因仍不明确,下面将阐述目前的研究进展。

4.1. 脑

孕妇产前吸烟与胎儿神经发育障碍的风险增加有关 [82] 。此外孕期吸入二手烟会增加婴儿神经管缺陷,无脑畸形、脊柱裂和脑膨出的风险 [83] [84] 。孕妇吸入二手烟雾对胎儿产生的影响不仅体现在出生后,而且可能还会增加子代在成年后患脑部疾病的风险,一项针对子代成年者的调查研究发现其感觉皮层有长期负面影响 [85] 。

烟草烟雾中的一氧化碳和尼古丁被认为是主要影响胎儿发育的毒害物质,一氧化碳可以扩散穿过胎盘屏障并进入胎儿循环。它与胎儿血红蛋白结合,减少氧气释放到胎儿组织中 [86] 。香烟中的尼古丁被认为是一种能够干扰胚胎发育的致畸物质 [87] ,可以经母体吸入通过胎盘传递给胎儿并在胎儿体内积累对胎儿产生不良影响,研究发现孕妇吸烟在胎儿循环中产生比孕妇更高的尼古丁浓度 [88] 。

4.2. 肺

有流行病学研究报告称,孕期香烟烟雾暴露会增加后代上呼吸道和下呼吸道感染、哮喘 [89] 、喘息 [90] 、肺动脉高压和后代肺功能受损的风险 [90] [91] 。肺部发育缺陷通常与肺功能受损和呼吸系统疾病的发病率增加有关 [92] 。母鼠孕期内接触香烟烟雾会显著影响幼崽的肺部的发育和生长,表现为幼崽肺容积低,造成幼崽具有较高的基线气道阻力、组织阻尼和组织弹性,并且幼鼠的整体尺寸较小,因此肺部较小,这可能会使肺功能受到损害 [93] 。并且发现孕鼠孕期暴露于香烟烟雾中会增加子代在以后的生活中患肺部疾病的易感性 [94] 。妊娠期暴露于香烟烟雾中的有害物质尼古丁可能会受到不利影响,尼古丁可能会破坏肺部的发育过程 [95] 。如促使动物胚胎干细胞分化为成纤维细胞,而影响胚胎干细胞分化 [96] 。且使成纤维细胞层胶原蛋白表达增加和气道壁厚度增加,可能会造成气道的口径和柔韧性的降低 [97] [98] ,肺泡发育不全 [99] ,增加呼吸时的肺阻力。

4.3. 肾

孕妇吸烟可能导致胎儿肾脏变小 [100] ,肾单位数量减少 [100] ,也发现新生儿肾小球未成熟 [101] [102] ,且使个体易发生肾损伤,进而出现高血压、肾功能受损 [103] 和成年后易患肾脏疾病 [100] [104] 。对怀孕大鼠进行香烟烟雾冷凝物处理,分娩12周的后代会出现平均肾小球体积、足细胞、系膜细胞和内皮细胞数量较低 [105] 。

4.4. 心脏

孕妇吸烟会增加胎儿患先天性心脏缺陷和冠心病的风险 [25] [106] [107] [108] 。相似的是,当孕妇在怀孕早期暴露于二手烟可能也会增加后代冠心病的风险 [109] [110] 。孕期配偶吸烟也会增加胎儿孤立性圆锥形心脏缺(isolated conotruncal heart defects)、间隔缺损和左心室流出道梗阻的风险 [111] 。

尼古丁产前暴露对胚胎心脏发育的影响机制尚不清楚,而氧化应激是胎儿冠心病和冠状动脉畸形发病机制的原因之一 [112] 。孕期尼古丁暴露,在小鼠胚胎心脏中检测到较高的活性氧物质(reactive oxygen species, ROS)和脂质过氧化物 [113] ,而这些活性氧物质,会破坏细胞内源性抗氧化能力,从而降低细胞增殖 [114] 。

4.5. 肝脏

在早期妊娠终止形态正常胎儿的肝脏组织中蛋白质组学研究发现,孕妇吸烟会影响胎儿肝脏组织内参与翻译后蛋白质加工和分泌的蛋白以及参与应激反应和解毒的蛋白质都发生了变化 [115] ,此外研究发现,四种肝脂肪酸摄取转运蛋白(SLC27A3、SLC27A4、SLC27A6、GOT2)的mRNA水平也有所下降 [116] 。

孕鼠妊娠期香烟烟雾暴露也会导致胎鼠肝脏组织中DNA加合物的形成,并且上调了肝脏中116个基因的表达,这些基因参与代谢、氧化应激反应、DNA和蛋白质修复以及信号转导,并且刺激促凋亡基因的表达和下调细胞周期的基因 [117] 。这些基因表达的改变,是否会对胎鼠的健康产生严重影响,还有待进一步研究。

5. 总结与展望

目前研究发现孕妇暴露香烟烟雾,会对胎儿的许多组织和器官如脑、肺、心脏、肾、肝脏等造成不同程度的影响,然而造成这些影响的主导分子和机制尚不明确。这些影响对胎儿发育及生理功能产生的长期作用也不清楚。借由动物模型可进一步了解这些科学问题相关生理病理机制。这些研究可以帮助预防胎儿受到香烟烟雾中有害物质产生的不良影响。并且可倡导社会为孕妇提供一个无烟害的环境,改善孕妇和胎儿的健康状况。

参考文献

[1] Shah, G., Bhatt, U. and Soni, V. (2023) Cigarette: An Unsung Anthropogenic Evil in the Environment. Environmental Science and Pollution Research International, 30, 59151-59162.
https://doi.org/10.1007/s11356-023-26867-9
[2] (2021) Spatial, Temporal, and Demographic Patterns in Prevalence of Smoking Tobacco Use and Attributable Disease Burden in 204 Countries and Territories, 1990-2019: A Systematic Analysis from the Global Burden of Disease Study 2019. The Lancet (London, England), 397, 2337-2360.
[3] 王辰, 肖丹, 池慧. 《中国吸烟危害健康报告2020》概要[J]. 中国循环杂志, 2021, 36(10): 937-952.
[4] World Health Organization (2023) Tobacco and Diabetes. World Health Organization, Geneva.
[5] Talhout, R., Schulz, T., Florek, E., et al. (2011) Hazardous Compounds in Tobacco Smoke. International Journal of Environmental Research and Public Health, 8, 613-628.
https://doi.org/10.3390/ijerph8020613
[6] Wilson, D.O., Weissfeld, J.L., Balkan, A., et al. (2008) Association of Radiographic Emphysema and Airflow Obstruction with Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 178, 738-744.
https://doi.org/10.1164/rccm.200803-435OC
[7] Jain, D., Chaudhary, P., Varshney, N., et al. (2021) Tobacco Smoking and Liver Cancer Risk: Potential Avenues for Carcinogenesis. Journal of Oncology, 2021, Article ID: 5905357.
https://doi.org/10.1155/2021/5905357
[8] Gansler, T., Fedewa, S.A., Flanders, W.D., et al. (2020) Prevalence of Cigarette Smoking among Patients with Different Histologic Types of Kidney Cancer. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 29, 1406-1412.
https://doi.org/10.1158/1055-9965.EPI-20-0015
[9] Chan, K.H., Wright, N., Xiao, D., et al. (2022) Tobacco Smoking and Risks of More than 470 Diseases in China: A Prospective Cohort Study. The Lancet Public Health, 7, E1014-E1026.
[10] Wheaton, A.G., Liu, Y., Croft, J.B., et al. (2019) Chronic Obstructive Pulmonary Disease and Smoking Status-United States, 2017. MMWR Morbidity and Mortality Weekly Report, 68, 533-538.
https://doi.org/10.15585/mmwr.mm6824a1
[11] Chen, Z., Wasti, B., Shang, Y., et al. (2023) Different Clinical Characteristics of Current Smokers and Former Smokers with Asthma: A Cross-Sectional Study of Adult Asthma Patients in China. Scientific Reports, 13, Article No. 1035.
https://doi.org/10.1038/s41598-022-22953-z
[12] Tse, L.A., Yu, I.T., Qiu, H., et al. (2014) Joint Effects of Smoking and Silicosis on Diseases to the Lungs. PLOS ONE, 9, E104494.
https://doi.org/10.1371/journal.pone.0104494
[13] Margaritopoulos, G.A., Vasarmidi, E., Jacob, J., et al. (2015) Smoking and Interstitial Lung Diseases. European Respiratory Review: An Official Journal of the European Respiratory Society, 24, 428-435.
https://doi.org/10.1183/16000617.0050-2015
[14] Rivera, N.V., Patasova, K., Kullberg, S., et al. (2019) A Gene-Environment Interaction between Smoking and Gene Polymorphisms Provides a High Risk of Two Subgroups of Sarcoidosis. Scientific Reports, 9, Article No. 18633.
https://doi.org/10.1038/s41598-019-54612-1
[15] Prüss-Ustün, A., Van Deventer, E., Mudu, P., et al. (2019) Environmental Risks and Non-Communicable Diseases. BMJ, 364, L265.
https://doi.org/10.1136/bmj.l265
[16] (2020) Prevalence and Attributable Health Burden of Chronic Respiratory Diseases, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet Respiratory Medicine, 8, 585-596.
[17] Collaborators GCRD (2023) Global Burden of Chronic Respiratory Diseases and Risk Factors, 1990-2019: An Update from the Global Burden of Disease Study 2019. EClinicalMedicine, 59, Article ID: 101936.
[18] Reece, S., Morgan, C., Parascandola, M., et al. (2019) Secondhand Smoke Exposure during Pregnancy: A Cross-Sectional Analysis of Data from Demographic and Health Survey from 30 Low-Income and Middle-Income Countries. Tobacco Control, 28, 420-426.
https://doi.org/10.1136/tobaccocontrol-2018-054288
[19] 林玲, 陈江芸. 孕妇被动吸烟状况及其丈夫吸烟行为调查[J]. 医学与社会, 2018, 31(3): 32-34.
[20] Zhang, L., Hsia, J., Tu, X., et al. (2015) Exposure to Secondhand Tobacco Smoke and Interventions among Pregnant Women in China: A Systematic Review. Preventing Chronic Disease, 12, E35.
https://doi.org/10.5888/pcd12.140377
[21] Skogsdal, Y., Karlsson, J., Tydén, T., et al. (2023) The Association of Smoking, Use of Snuff, and Preconception Alcohol Consumption with Spontaneous Abortion: A Population-Based Cohort Study. Acta Obstetricia et Gynecologica Scandinavica, 102, 15-24.
https://doi.org/10.1111/aogs.14470
[22] Tarasi, B., Cornuz, J., Clair, C., et al. (2022) Cigarette Smoking during Pregnancy and Adverse Perinatal Outcomes: A Cross-Sectional Study over 10 Years. BMC Public Health, 22, Article No. 2403.
https://doi.org/10.1186/s12889-022-14881-4
[23] Bernstein, I.M., Mongeon, J.A., Badger, G.J., et al. (2005) Maternal Smoking and Its Association with Birth Weight. Obstetrics and Gynecology, 106, 986-991.
https://doi.org/10.1097/01.AOG.0000182580.78402.d2
[24] Tsuchida, A., Hamazaki, K., Kigawa, M., et al. (2021) Association between Maternal Smoking History and Congenital Anomalies in Children: Results from the Japan Environment and Children’s Study. Congenital Anomalies, 61, 159-168.
https://doi.org/10.1111/cga.12430
[25] Hackshaw, A., Rodeck, C. and Boniface, S. (2011) Maternal Smoking in Pregnancy and Birth Defects: A Systematic Review Based on 173 687 Malformed Cases and 11.7 Million Controls. Human Reproduction Update, 17, 589-604.
https://doi.org/10.1093/humupd/dmr022
[26] Zhang, S., Wang, Z., Zhang, J., et al. (2021) Inhalable Cigarette-Burning Particles: Size-Resolved Chemical Composition and Mixing State. Environmental Research, 202, Article ID: 111790.
https://doi.org/10.1016/j.envres.2021.111790
[27] Rodgman, A. and Perfetti, T. (2013) The Chemical Components of Tobacco and Tobacco Smoke. Second Edition.
[28] Makena, P., Kikalova, T., Prasad, G.L., et al. (2023) Oxidative Stress and Lung Fibrosis: Towards an Adverse Outcome Pathway. International Journal of Molecular Sciences, 24, Article No. 12490.
https://doi.org/10.3390/ijms241512490
[29] Traini, C., Nistri, S., Calosi, L., et al. (2021) Chronic Exposure to Cigarette Smoke Affects the Ileum and Colon of Guinea Pigs Differently. Relaxin (RLX-2, Serelaxin) Prevents Most Local Damage. Frontiers in Pharmacology, 12, Article ID: 804623.
https://doi.org/10.3389/fphar.2021.804623
[30] Crooks, P.A. (1999) Chapter 4. Chemical Properties of Nicotine and Other Tobacco-Related Compounds. In: Gorrod, J.W. and Jacob, P., Eds., Analytical Determination of Nicotine and Related Compounds and Their Metabolites, Elsevier Science, Amsterdam, 69-147.
https://doi.org/10.1016/B978-044450095-3/50005-X
[31] Zhang, H., Pang, Y., Luo, Y., et al. (2018) Enantiomeric Composition of Nicotine in Tobacco Leaf, Cigarette, Smokeless Tobacco, and E-Liquid by Normal Phase High-Performance Liquid Chromatography. Chirality, 30, 923-931.
https://doi.org/10.1002/chir.22866
[32] Hukkanen, J., Jacob, P. and Benowitz, N.L. (2005) Metabolism and Disposition Kinetics of Nicotine. Pharmacological Reviews, 57, 79-115.
https://doi.org/10.1124/pr.57.1.3
[33] Benowitz, N.L., Hukkanen, J. and Jacob, P. (2009) Nicotine Chemistry, Metabolism, Kinetics and Biomarkers. In: Henningfield, J.E., London, E.D. and Pogun, S., Eds., Nicotine Psychopharmacology, Springer, Berlin, 29-60.
https://doi.org/10.1007/978-3-540-69248-5_2
[34] Urakawa, N., Nagata, T., Kudo, K., et al. (1994) Simultaneous Determination of Nicotine and Cotinine in Various Human Tissues Using Capillary Gas Chromatography/Mass Spectrometry. International Journal of Legal Medicine, 106, 232-236.
https://doi.org/10.1007/BF01225411
[35] Wittenberg, R.E., Wolfman, S.L., De Biasi, M., et al. (2020) Nicotinic Acetylcholine Receptors and Nicotine Addiction: A Brief Introduction. Neuropharmacology, 177, Article ID: 108256.
https://doi.org/10.1016/j.neuropharm.2020.108256
[36] Henderson, B.J. and Lester, H.A. (2015) Inside-Out Neuropharmacology of Nicotinic Drugs. Neuropharmacology, 96, 178-193.
https://doi.org/10.1016/j.neuropharm.2015.01.022
[37] Grady, S.R., Salminen, O., Laverty, D.C., et al. (2007) The Subtypes of Nicotinic Acetylcholine Receptors on Dopaminergic Terminals of Mouse Striatum. Biochemical Pharmacology, 74, 1235-1246.
https://doi.org/10.1016/j.bcp.2007.07.032
[38] Nashmi, R. and Lester, H.A. (2006) CNS Localization of Neuronal Nicotinic Receptors. Journal of Molecular Neuroscience: MN, 30, 181-184.
https://doi.org/10.1385/JMN:30:1:181
[39] Hung, R.J., Mckay, J.D., Gaborieau, V., et al. (2008) A Susceptibility Locus for Lung Cancer Maps to Nicotinic Acetylcholine Receptor Subunit Genes on 15q25. Nature, 452, 633-637.
https://doi.org/10.1038/nature06885
[40] Dajas-Bailador, F. and Wonnacott, S. (2004) Nicotinic Acetylcholine Receptors and the Regulation of Neuronal Signalling. Trends in Pharmacological Sciences, 25, 317-324.
https://doi.org/10.1016/j.tips.2004.04.006
[41] Balfour, D.J., Wright, A.E., Benwell, M.E., et al. (2000) The Putative Role of Extra-Synaptic Mesolimbic Dopamine in the Neurobiology of Nicotine Dependence. Behavioural Brain Research, 113, 73-83.
https://doi.org/10.1016/S0166-4328(00)00202-3
[42] Robison, A.J. and Nestler, E.J. (2011) Transcriptional and Epigenetic Mechanisms of Addiction. Nature Reviews Neuroscience, 12, 623-637.
https://doi.org/10.1038/nrn3111
[43] Koob, G.F. and Volkow, N.D. (2010) Neurocircuitry of Addiction. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35, 217-238.
https://doi.org/10.1038/npp.2009.110
[44] Lam, D.C., Girard, L., Ramirez, R., et al. (2007) Expression of Nicotinic Acetylcholine Receptor Subunit Genes in Non-Small-Cell Lung Cancer Reveals Differences between Smokers and Nonsmokers. Cancer Research, 67, 4638-4647.
https://doi.org/10.1158/0008-5472.CAN-06-4628
[45] Maneckjee, R. and Minna, J.D. (1990) Opioid and Nicotine Receptors Affect Growth Regulation of Human Lung Cancer Cell Lines. Proceedings of the National Academy of Sciences of the United States of America, 87, 3294-3298.
https://doi.org/10.1073/pnas.87.9.3294
[46] Paik, J.H., Kang, S., Durey, A., et al. (2018) Symptomatic Bradycardia Due to Nicotine Intoxication. Revista Brasileira De Terapia Intensiva, 30, 121-126.
https://doi.org/10.5935/0103-507X.20180018
[47] Gehlbach, S.H., Williams, W.A., Perry, L.D., et al. (1974) Green-Tobacco Sickness. An Illness of Tobacco Harvesters. JAMA, 229, 1880-1883.
https://doi.org/10.1001/jama.1974.03230520022024
[48] Dempsey, D.A. and Benowitz, N.L. (2001) Risks and Benefits of Nicotine to Aid Smoking Cessation in Pregnancy. Drug Safety, 24, 277-322.
https://doi.org/10.2165/00002018-200124040-00005
[49] Dahlström, A., Lundell, B., Curvall, M., et al. (1990) Nicotine and Cotinine Concentrations in the Nursing Mother and Her Infant. Acta Paediatrica Scandinavica, 79, 142-147.
https://doi.org/10.1111/j.1651-2227.1990.tb11430.x
[50] (2010) Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 92, 1-853.
[51] Skupińska, K., Misiewicz, I. and Kasprzycka-Guttman, T. (2004) Polycyclic Aromatic Hydrocarbons: Physicochemical Properties, Environmental Appearance and Impact on Living Organisms. Acta Poloniae Pharmaceutica, 61, 233-240.
[52] Grimmer, G., Naujack, K.W. and Dettbarn, G. (1987) Gaschromatographic Determination of Polycyclic Aromatic Hydrocarbons, Aza-Arenes, Aromatic Amines in the Particle and Vapor Phase of Mainstream and Sidestream Smoke of Cigarettes. Toxicology Letters, 35, 117-124.
https://doi.org/10.1111/j.1651-2227.1990.tb11430.x
[53] Jin, X., Hua, Q., Liu, Y., et al. (2021) Organ and Tissue-Specific Distribution of Selected Polycyclic Aromatic Hydrocarbons (PAHs) in ApoE-KO Mouse. Environmental Pollution (Barking, Essex: 1987), 286, Article ID: 117219.
https://doi.org/10.1016/j.envpol.2021.117219
[54] Lewtas, J. (2007) Air Pollution Combustion Emissions: Characterization of Causative Agents and Mechanisms Associated with Cancer, Reproductive, and Cardiovascular Effects. Mutation Research, 636, 95-133.
https://doi.org/10.1016/j.mrrev.2007.08.003
[55] Nebert, D.W., Shi, Z., Gálvez-Peralta, M., et al. (2013) Oral Benzo[A]Pyrene: Understanding Pharmacokinetics, Detoxication, and Consequences—Cyp1 Knockout Mouse Lines as a Paradigm. Molecular Pharmacology, 84, 304-313.
https://doi.org/10.1124/mol.113.086637
[56] Yang, P., Ma, J., Zhang, B., et al. (2012) CpG Site-Specific Hypermethylation of P16INK4α in Peripheral Blood Lymphocytes of PAH-Exposed Workers. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 21, 182-190.
https://doi.org/10.1158/1055-9965.EPI-11-0784
[57] Vondráček, J. and Machala, M. (2021) The Role of Metabolism in Toxicity of Polycyclic Aromatic Hydrocarbons and Their Non-Genotoxic Modes of Action. Current Drug Metabolism, 22, 584-595.
https://doi.org/10.2174/1389200221999201125205725
[58] Dorey, A., Scheerlinck, P., Nguyen, H., et al. (2020) Acute and Chronic Carbon Monoxide Toxicity from Tobacco Smoking. Military Medicine, 185, E61-E67.
https://doi.org/10.1093/milmed/usz280
[59] Ernst, A. and Zibrak, J.D. (1998) Carbon Monoxide Poisoning. The New England Journal of Medicine, 339, 1603-1608.
https://doi.org/10.1056/NEJM199811263392206
[60] Nañagas, K.A., Penfound, S.J. and Kao, L.W. (2022) Carbon Monoxide Toxicity. Emergency Medicine Clinics of North America, 40, 283-312.
https://doi.org/10.1016/j.emc.2022.01.005
[61] Sen, S., Peltz, C., Beard, J., et al. (2010) Recurrent Carbon Monoxide Poisoning from Cigarette Smoking. The American Journal of the Medical Sciences, 340, 427-428.
https://doi.org/10.1097/MAJ.0b013e3181ef712d
[62] Chang, M., Mcdaniel, R., Naworal, J., et al. (2002) A Rapid Method for the Determination of Mercury in Mainstream Cigarette Smoke by Two-Stage Amalgamation Cold Vapor Atomic Absorption Spectrometry. Journal of Analytical Atomic Spectrometry, 17, 710-715.
https://doi.org/10.1039/b200715k
[63] O’connor, R.J., Li, Q., Stephens, W.E., et al. (2010) Cigarettes Sold in China: Design, Emissions and Metals. Tobacco Control, 19, I47-I53.
https://doi.org/10.1136/tc.2009.030163
[64] Mutti, A., Corradi, M., Goldoni, M., et al. (2006) Exhaled Metallic Elements and Serum Pneumoproteins in Asymptomatic Smokers and Patients with COPD or Asthma. Chest, 129, 1288-1297.
https://doi.org/10.1378/chest.129.5.1288
[65] Lin, Q., Hou, X.Y., Yin, X.N., et al. (2017) Prenatal Exposure to Environmental Tobacco Smoke and Hyperactivity Behavior in Chinese Young Children. International Journal of Environmental Research and Public Health, 14, Article No. 1132.
https://doi.org/10.3390/ijerph14101132
[66] Fell, M., Russell, C., Medina, J., et al. (2021) The Impact of Changing Cigarette Smoking Habits and Smoke-Free Legislation on Orofacial Cleft Incidence in the United Kingdom: Evidence from Two Time-Series Studies. PLOS ONE, 16, E0259820.
https://doi.org/10.1371/journal.pone.0259820
[67] Ericson, A., Källén, B. and Westerholm, P. (1979) Cigarette Smoking as an Etiologic Factor in Cleft Lip and Palate. American Journal of Obstetrics and Gynecology, 135, 348-351.
https://doi.org/10.1016/0002-9378(79)90703-8
[68] Czeizel, A.E., Kodaj, I. and Lenz, W. (1994) Smoking during Pregnancy and Congenital Limb Deficiency. BMJ, 308, 1473-1476.
https://doi.org/10.1136/bmj.308.6942.1473
[69] Carmichael, S.L., Ma, C., Rasmussen, S.A., et al. (2008) Craniosynostosis and Maternal Smoking. Birth Defects Research Part A, Clinical and Molecular Teratology, 82, 78-85.
https://doi.org/10.1002/bdra.20426
[70] Zhao, L., Chen, L., Yang, T., et al. (2020) Parental Smoking and the Risk of Congenital Heart Defects in Offspring: An Updated Meta-Analysis of Observational Studies. European Journal of Preventive Cardiology, 27, 1284-1293.
https://doi.org/10.1177/2047487319831367
[71] Elliott, A.J., Kinney, H.C., Haynes, R.L., et al. (2020) Concurrent Prenatal Drinking and Smoking Increases Risk for SIDS: Safe Passage Study Report. EClinicalMedicine, 19, Article ID: 100247.
https://doi.org/10.1016/j.eclinm.2019.100247
[72] Hajdusianek, W., Żórawik, A., Waliszewska-Prosół, M., et al. (2021) Tobacco and Nervous System Development and Function—New Findings 2015-2020. Brain Sciences, 11, Article No. 797.
https://doi.org/10.3390/brainsci11060797
[73] Shao, X., Yu, W., Yang, Y., et al. (2022) The Mystery of the Life Tree: The Placentas. Biology of Reproduction, 107, 301-316.
https://doi.org/10.1093/biolre/ioac095
[74] Levy, M., Kovo, M., Ben-Ezry, E., et al. (2021) Passively Inhaled Tobacco Smoke-Pregnancy and Neonatal Outcomes in Correlation with Placental Histopathology. Placenta, 112, 23-27.
https://doi.org/10.1016/j.placenta.2021.06.014
[75] Ferreira, A.P., Bernardi, J.R., Ferreira, C.F., et al. (2016) Fatores associados ao número de consultas pré-natais de mulheres tabagistas e não tabagistas atendidas em hospitais de porto alegre (rs), Brasil. Saúde Em Redes, 2, 161-178.
https://doi.org/10.18310/2446-4813.2016v2n2p167-178
[76] Asmussen, I. (1977) Ultrastructure of the Human Placenta at Term. Observations on Placentas from Newborn Children of Smoking and Non-Smoking Mothers. Acta Obstetricia et Gynecologica Scandinavica, 56, 119-126.
https://doi.org/10.3109/00016347709158353
[77] Leonardi-Bee, J., Smyth, A., Britton, J., et al. (2008) Environmental Tobacco Smoke and Fetal Health: Systematic Review and Meta-Analysis. Archives of Disease in Childhood Fetal and Neonatal Edition, 93, F351-F361.
https://doi.org/10.1136/adc.2007.133553
[78] Hawsawi, A.M., Bryant, L.O. and Goodfellow, L.T. (2015) Association between Exposure to Secondhand Smoke during Pregnancy and Low Birthweight: A Narrative Review. Respiratory Care, 60, 135-140.
https://doi.org/10.4187/respcare.02798
[79] Abraham, M., Alramadhan, S., Iniguez, C., et al. (2017) A Systematic Review of Maternal Smoking during Pregnancy and Fetal Measurements with Meta-Analysis. PLOS ONE, 12, E0170946.
https://doi.org/10.1371/journal.pone.0170946
[80] Bardy, A.H., Seppälä, T., Lillsunde, P., et al. (1993) Objectively Measured Tobacco Exposure during Pregnancy: Neonatal Effects and Relation to Maternal Smoking. British Journal of Obstetrics and Gynaecology, 100, 721-726.
https://doi.org/10.1111/j.1471-0528.1993.tb14262.x
[81] Lindsay, C.A., Thomas, A.J. and Catalano, P.M. (1997) The Effect of Smoking Tobacco on Neonatal Body Composition. American Journal of Obstetrics and Gynecology, 177, 1124-1128.
https://doi.org/10.1016/S0002-9378(97)70027-9
[82] Chen, D., Niu, Q., Liu, S., et al. (2023) The Correlation between Prenatal Maternal Active Smoking and Neurodevelopmental Disorders in Children: A Systematic Review and Meta-Analysis. BMC Public Health, 23, Article No. 611.
https://doi.org/10.1186/s12889-023-15496-z
[83] Wang, M., Wang, Z.P., Zhang, M., et al. (2014) Maternal Passive Smoking during Pregnancy and Neural Tube Defects in Offspring: A Meta-Analysis. Archives of Gynecology and Obstetrics, 289, 513-521.
https://doi.org/10.1007/s00404-013-2997-3
[84] Hoyt, A.T., Canfield, M.A., Romitti, P.A., et al. (2016) Associations between Maternal Periconceptional Exposure to Secondhand Tobacco Smoke and Major Birth Defects. American Journal of Obstetrics and Gynecology, 215, 613.E1-.E11.
https://doi.org/10.1016/j.ajog.2016.07.022
[85] Salminen, L.E., Wilcox, R.R., Zhu, A.H., et al. (2019) Altered Cortical Brain Structure and Increased Risk for Disease Seen Decades after Perinatal Exposure to Maternal Smoking: A Study of 9000 Adults in the UK Biobank. Cerebral Cortex (New York, NY: 1991), 29, 5217-5233.
https://doi.org/10.1093/cercor/bhz060
[86] Avni, R., Golani, O., Akselrod-Ballin, A., et al. (2016) MR Imaging-Derived Oxygen-Hemoglobin Dissociation Curves and Fetal-Placental Oxygen-Hemoglobin Affinities. Radiology, 280, 68-77.
https://doi.org/10.1148/radiol.2015150721
[87] Guo, H., Tian, L., Zhang, J.Z., et al. (2019) Single-Cell RNA Sequencing of Human Embryonic Stem Cell Differentiation Delineates Adverse Effects of Nicotine on Embryonic Development. Stem Cell Reports, 12, 772-786.
https://doi.org/10.1016/j.stemcr.2019.01.022
[88] Beratis, N.G., Panagoulias, D. and Varvarigou, A. (1996) Increased Blood Pressure in Neonates and Infants Whose Mothers Smoked during Pregnancy. The Journal of Pediatrics, 128, 806-812.
https://doi.org/10.1016/S0022-3476(96)70333-5
[89] Den Dekker, H.T., Voort, A., De Jongste, J.C., et al. (2015) Tobacco Smoke Exposure, Airway Resistance, and Asthma in School-Age Children: The Generation R Study. Chest, 148, 607-617.
https://doi.org/10.1378/chest.14-1520
[90] Kalliola, S., Pelkonen, A.S., Malmberg, L.P., et al. (2013) Maternal Smoking Affects Lung Function and Airway Inflammation in Young Children with Multiple-Trigger Wheeze. The Journal of Allergy and Clinical Immunology, 131, 730-735.
https://doi.org/10.1016/j.jaci.2013.01.005
[91] Spindel, E.R. and Mcevoy, C.T. (2016) The Role of Nicotine in the Effects of Maternal Smoking during Pregnancy on Lung Development and Childhood Respiratory Disease. Implications for Dangers of E-Cigarettes. American Journal of Respiratory and Critical Care Medicine, 193, 486-494.
https://doi.org/10.1164/rccm.201510-2013PP
[92] Stocks, J., Hislop, A. and Sonnappa, S. (2013) Early Lung Development: Lifelong Effect on Respiratory Health and Disease. The Lancet Respiratory Medicine, 1, 728-742.
https://doi.org/10.1016/S2213-2600(13)70118-8
[93] Larcombe, A.N., Foong, R.E., Berry, L.J., et al. (2011) In Utero Cigarette Smoke Exposure Impairs Somatic and Lung Growth in BALB/C Mice. The European Respiratory Journal, 38, 932-938.
https://doi.org/10.1183/09031936.00156910
[94] Noël, A., Yilmaz, S., Farrow, T., et al. (2023) Sex-Specific Alterations of the Lung Transcriptome at Birth in Mouse Offspring Prenatally Exposed to Vanilla-Flavored E-Cigarette Aerosols and Enhanced Susceptibility to Asthma. International Journal of Environmental Research and Public Health, 20, Article No. 3710.
https://doi.org/10.3390/ijerph20043710
[95] Maritz, G.S. (2013) Perinatal Exposure to Nicotine and Implications for Subsequent Obstructive Lung Disease. Paediatric Respiratory Reviews, 14, 3-8.
https://doi.org/10.1016/j.prrv.2012.03.006
[96] Ben-Yehudah, A., Campanaro, B.M., Wakefield, L.M., et al. (2013) Nicotine Exposure during Differentiation Causes Inhibition of N-Myc Expression. Respiratory Research, 14, Article No. 119.
https://doi.org/10.1186/1465-9921-14-119
[97] Sekhon, H.S., Keller, J.A., Benowitz, N.L., et al. (2001) Prenatal Nicotine Exposure Alters Pulmonary Function in Newborn Rhesus Monkeys. American Journal of Respiratory and Critical Care Medicine, 164, 989-994.
https://doi.org/10.1164/ajrccm.164.6.2011097
[98] Wongtrakool, C., Wang, N., Hyde, D.M., et al. (2012) Prenatal Nicotine Exposure Alters Lung Function and Airway Geometry through α7 Nicotinic Receptors. American Journal of Respiratory Cell and Molecular Biology, 46, 695-702.
https://doi.org/10.1165/rcmb.2011-0028OC
[99] Sekhon, H.S., Jia, Y., Raab, R., et al. (1999) Prenatal Nicotine Increases Pulmonary Alpha7 Nicotinic Receptor Expression and Alters Fetal Lung Development in Monkeys. The Journal of Clinical Investigation, 103, 637-647.
https://doi.org/10.1172/JCI5232
[100] Taal, H.R., Geelhoed, J.J., Steegers, E.A., et al. (2011) Maternal Smoking during Pregnancy and Kidney Volume in the Offspring: The Generation R Study. Pediatric Nephrology (Berlin, Germany), 26, 1275-1283.
https://doi.org/10.1007/s00467-011-1848-3
[101] Czekaj, P., Pałasz, A., Lebda-Wyborny, T., et al. (2002) Morphological Changes in Lungs, Placenta, Liver and Kidneys of Pregnant Rats Exposed to Cigarette Smoke. International Archives of Occupational and Environmental Health, 75, S27-S35.
https://doi.org/10.1007/s00420-002-0343-3
[102] Nelson, E., Goubet-Wiemers, C., Guo, Y., et al. (1999) Maternal Passive Smoking during Pregnancy and Foetal Developmental Toxicity. Part 2: Histological Changes. Human & Experimental Toxicology, 18, 257-264.
https://doi.org/10.1191/096032799678840011
[103] Brion, M.J., Leary, S.D., Lawlor, D.A., et al. (2008) Modifiable Maternal Exposures and Offspring Blood Pressure: A Review of Epidemiological Studies of Maternal Age, Diet, and Smoking. Pediatric Research, 63, 593-598.
https://doi.org/10.1203/PDR.0b013e31816fdbd3
[104] Brenner, B.M. and Chertow, G.M. (1994) Congenital Oligonephropathy and the Etiology of Adult Hypertension and Progressive Renal Injury. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 23, 171-175.
https://doi.org/10.1016/S0272-6386(12)80967-X
[105] Zarzecki, M., Adamczak, M., Wystrychowski, A., et al. (2012) Exposure of Pregnant Rats to Cigarette-Smoke Condensate Causes Glomerular Abnormalities in Offspring. Kidney & Blood Pressure Research, 36, 162-171.
https://doi.org/10.1159/000341489
[106] Alberman, E.D. and Goldstein, H. (1971) Possible Teratogenic Effect of Cigarette Smoking. Nature, 231, 529-530.
https://doi.org/10.1038/231529a0
[107] Lee, L.J. and Lupo, P.J. (2013) Maternal Smoking during Pregnancy and the Risk of Congenital Heart Defects in Offspring: A Systematic Review and Metaanalysis. Pediatric Cardiology, 34, 398-407.
https://doi.org/10.1007/s00246-012-0470-x
[108] Alverson, C.J., Strickland, M.J., Gilboa, S.M., et al. (2011) Maternal Smoking and Congenital Heart Defects in the Baltimore-Washington Infant Study. Pediatrics, 127, E647-E653.
https://doi.org/10.1542/peds.2010-1399
[109] Li, J., Du, Y.J., Wang, H.L., et al. (2020) Association between Maternal Passive Smoking during Perinatal Period and Congenital Heart Disease in Their Offspring-Based on a Case-Control Study. Chinese Journal of Epidemiology, 41, 884-889.
[110] Deng, C., Pu, J., Deng, Y., et al. (2022) Association between Maternal Smoke Exposure and Congenital Heart Defects from a Case-Control Study in China. Scientific Reports, 12, Article No. 14973.
https://doi.org/10.1038/s41598-022-18909-y
[111] Deng, K., Liu, Z., Lin, Y., et al. (2013) Periconceptional Paternal Smoking and the Risk of Congenital Heart Defects: A Case-Control Study. Birth Defects Research Part A, Clinical and Molecular Teratology, 97, 210-216.
https://doi.org/10.1002/bdra.23128
[112] Moazzen, H., Lu, X., Liu, M., et al. (2015) Pregestational Diabetes Induces Fetal Coronary Artery Malformation via Reactive Oxygen Species Signaling. Diabetes, 64, 1431-1443.
https://doi.org/10.2337/db14-0190
[113] Greco, E.R., Engineer, A., Saiyin, T., et al. (2022) Maternal Nicotine Exposure Induces Congenital Heart Defects in the Offspring of Mice. Journal of Cellular and Molecular Medicine, 26, 3223-3234.
https://doi.org/10.1111/jcmm.17328
[114] Engineer, A., Saiyin, T., Greco, E.R., et al. (2019) Say NO to ROS: Their Roles in Embryonic Heart Development and Pathogenesis of Congenital Heart Defects in Maternal Diabetes. Antioxidants (Basel, Switzerland), 8, Article No. 436.
https://doi.org/10.3390/antiox8100436
[115] Filis, P., Nagrath, N., Fraser, M., et al. (2015) Maternal Smoking Dysregulates Protein Expression in Second Trimester Human Fetal Livers in a Sex-Specific Manner. The Journal of Clinical Endocrinology and Metabolism, 100, E861-E870.
https://doi.org/10.1210/jc.2014-3941
[116] Walker, N., Filis, P., O’shaughnessy, P.J., et al. (2019) Nutrient Transporter Expression in both the Placenta and Fetal Liver Are Affected by Maternal Smoking. Placenta, 78, 10-17.
https://doi.org/10.1016/j.placenta.2019.02.010
[117] Izzotti, A., Balansky, R.M., Cartiglia, C., et al. (2003) Genomic and Transcriptional Alterations in Mouse Fetus Liver after Transplacental Exposure to Cigarette Smoke. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 17, 1127-1129.
https://doi.org/10.1096/fj.02-0967fje