冠状动脉钙化研究进展
Progress in the Study of Coronary Artery Calcification
DOI: 10.12677/acm.2024.1441093, PDF, HTML, XML, 下载: 36  浏览: 71 
作者: 陈 亮*:西安医学院研究生院,陕西 西安;程 功#:陕西省人民医院心血管内二科,陕西 西安
关键词: 冠状动脉粥样硬化性心脏病冠状动脉钙化IVUSOCTCoronary Atherosclerotic Heart Disease Coronary Artery Calcification IVUS OCT
摘要: 冠状动脉钙化是由于钙和磷酸盐以羟基磷灰石的形式结晶而引起,多种机制促使羟基磷灰石储存于冠状动脉壁的细胞外基质中导致的病理性改变。冠状动脉钙化,伴随着动脉粥样硬化的发展,与心血管疾病的传统危险因素、血运重建术后再发心血管事件及未来的心血管事件密切相关。在严重钙化病变的冠脉中,不仅常规的经皮冠状动脉介入手术并不能顺利地进行,而且介入手术即刻的并发症以及早期和晚期主要不良心血管事件的发生率明显升高。本文将对冠状动脉钙化的机制、目前的冠脉内影像学检测及介入治疗进行综述。
Abstract: Coronary artery calcification is a pathologic change caused by the crystallization of calcium and phosphate in the form of hydroxyapatite, which multiple mechanisms contribute to the storage of hydroxyapatite in the extracellular matrix of the coronary artery wall. Coronary artery calcification, which accompanies the development of atherosclerosis, is strongly associated with traditional risk factors for cardiovascular disease, recurrent cardiovascular events after hemodialysis, and future cardiovascular events. In coronary arteries with severely calcified lesions, not only conventional percutaneous coronary interventions do not go smoothly, but also the rate of immediate complications of the interventions as well as early and late major adverse cardiovascular events is significantly higher. This article will review the mechanisms of coronary artery calcification, current intracoronary imaging tests, and interventional treatments.
文章引用:陈亮, 程功. 冠状动脉钙化研究进展[J]. 临床医学进展, 2024, 14(4): 814-819. https://doi.org/10.12677/acm.2024.1441093

1. 引言

据《中国心血管疾病及健康报告2022》统计,我国心血管疾病(Cardiovascular Diseases, CVD)现患人数3.3亿,其中冠心病1139万人。冠心病已成为我国居民的首要死亡原因,给居民和社会带来的经济负担日渐加重,已成为重大的公共卫生问题,且患病率仍处于持续上升阶段 [1] 。冠状动脉钙化(Coronary Artery Calcification, CAC),伴随着动脉粥样硬化的发展,是冠状动脉粥样硬化高度可靠和稳健的生物标志物,与CVD的传统危险因素、血运重建术后再发心血管事件及未来的心血管事件密切相关 [2] [3] 。正如每一位心血管介入专家所知,在严重钙化病变的冠脉中,或伴有扭曲、成角、弥漫的钙化病变,不仅常规的经皮冠状动脉介入手术并不能顺利地进行,而且介入手术即刻的并发症以及早期和晚期主要不良心血管事件的发生率明显升高 [4] 。本文章将对冠状动脉钙化的机制、目前的冠脉内影像学检测及介入治疗进行综述。

2. 冠状动脉钙化概述

目前研究明确,冠状动脉钙化是由于钙和磷酸盐以羟基磷灰石的形式结晶而引起,多种机制促使羟基磷灰石储存于冠状动脉动脉壁的细胞外基质中。根据其位置和动脉壁内沉积的部位,动脉钙化可分为两大类:中膜钙化和内膜钙化 [5] 。动脉粥样硬化内膜钙化通常与动脉粥样硬化进展有关,冠状动脉钙化主要是指此类型的内膜钙化。

目前研究表明,冠状动脉钙化主要是由软骨样细胞驱动的异形钙沉淀以及巨噬细胞和局部细胞因子释放激活的炎症级联反应所致 [6] 。同时,钙磷代谢失衡、程序性细胞死亡、内质网应激、线粒体功能障碍及肠道菌群等参与钙化的发生及进展 [7] [8] 。

随着成像技术的进步,冠脉介入也步入新时代。更为精确的血管成像技术的开发,如光学相干断层扫描技术(Optical Coherence Tomography, OCT)、血管内超声(Intravascular Ultrasound, IVUS)等,增强了对钙化病变的识别,也可以评估钙化负荷、分布及偏心率,这些细节协助制定支架策略 [9] 。同时,在处理钙化病变方面,以旋切术为代表的治疗策略不断推陈出新。

3. 冠状动脉钙化的机制

1) 炎症与冠状动脉钙化

炎症是机体遭受伤害后的防御反应,然而炎症状态又恶化了冠状动脉粥样硬化及钙化的进展。在冠状动脉钙化形成及发展的过程中,炎症是将心血管疾病的危险因素与冠状动脉钙化联系起来的关键因素,更是冠脉钙化的重要触发因素 [10] 。新出现的证据表明,炎症因子IL-Iβ是炎症加速动脉钙化的关键因素之一,并且提出使用IL-1β抑制剂作为治疗血管钙化的有效策略 [11] 。动脉钙化可以在多方面受到炎症的调节。

2) 钙磷代谢失衡与冠状动脉钙化

既往大量证据已表明,钙磷代谢失衡是动脉钙化的重要病理生理机制 [5] 。最近,针对于血管钙化基因层面的一项体外研究发现,MicroRNA-708-5p通过靶向调节Pit-1 (垂体特异性转录因子-1)来降低磷酸盐诱导的血管钙化,以及通过靶向调节Pit-8 (垂体特异性转录因子-8)抑制Wnt8b/β-catenin通路对血管钙化发挥抑制作用,或可作为血管钙化治疗的新靶点 [12] 。钙结合蛋白S100家族作为钙结合蛋白在细胞内外发挥其生物学功能,据报道,S100家族的成员之一S100 A11在血管钙化中发挥关键作用 [13] 。

3) 细胞凋亡与冠状动脉钙化

细胞凋亡是所有生命不可避免的命运,对生物体平衡至关重要 [14] 。当细胞凋亡失调时,这将导致一系列的病理后果。血管平滑肌作为血管钙化的核心细胞,由于其程序性细胞死亡可导致纤维帽变薄并形成坏死核心,坏死核心在各种因素的作用下进一步发展,如各种炎症因子、骨桥蛋白、糖尿病及慢性肾脏病等 [15] 。

4) 内质网应激与冠状动脉钙化

在蛋白质组装过程中,内质网是有机细胞中对蛋白质折叠和成熟具有高度影响的细胞器。当蛋白质折叠能力超过内质网的能力时,则发生内质网应激。如今,已有研究表明内质网应激可以通过多种方式促进的进展。如前文所述,血管平滑肌细胞是参与动脉钙化发生发展的重要细胞类型,而内质网应激是冠状动脉钙化成骨表型转化的重要诱导因素,促进动脉钙化的形成。这一过程伴随着平滑肌细胞标志物(SM 22α和SM α-actin)的丢失和骨软骨形成标志物(Runt相关转录因子2 (Runx 2)、骨形态发生蛋白-2 (BMP-2)及骨钙素等)的获得 [16] 。

5) 线粒体功能障碍与冠状动脉钙化

线粒体在能量产生、细胞代谢、肿瘤和衰老中起重要作用 [17] 。线粒体含有多种电子转运蛋白,可以形成广泛的产生活性氧(ROS)和抗氧化防御的网络。在机体损伤作用下,包括氧化损伤本身,可导致线粒体功能的失衡,包括线粒体自噬、线粒体凋亡等,并导致生物分子的氧化损伤,包括线粒体DNA,然后诱导动脉钙化 [18] 。

6) 其他

除上文提及的机制外,参与冠状动脉钙化的机制仍在继续探索,包括肠道微生物、遗传因素等。近期的研究表明,特定的肠道微生物组成与全身炎症和氧化应激有关,这两者都是冠状动脉钙化发病机制的关键因素 [19] 。遗传因素影响冠状动脉钙化进展,研究发现CAC进展的遗传率为40%,其中14%的变异可由遗传因素解释。全基因组关联研究表明,3个单核苷酸多态性与冠状动脉钙化的关联达到全基因组显著性,其中两个也与冠状动脉钙化进展呈正相关 [20] 。

4. 血管内影像学评估冠状动脉钙化

1) 血管内超声

IVUS依靠高频声波在冠状动脉血管内的传播和反射来生成横截面图像,钙化表现为灰白色回声致密区,其检测冠状动脉钙的灵敏度从微钙化的64%到致密连贯钙化的90%不等,而其特异性为100% [9] [21] 。在介入治疗过程中,IVUS评估冠脉钙化程度和形态等信息,从而优化支架置入和指导复杂干预方面发挥了关键作用。在对冠脉钙化病变进行PCI可以显著改善短期和长期临床结局 [22] 。

2) 光学相干断层扫描技术

OCT导管被引入冠状动脉后,发射近红外光,反射光被收集并转化为电信号,用于构建冠状动脉结构的高分辨率横截面图像,钙化表现为具有高度反射性,并且显示明亮。这些图像对于评估血管尺寸、斑块形态及支架特征发挥着重要作用,使其在复杂PCI手术中发挥着举足轻重的作用 [9] 。然而,OCT存在一些局限性。OCT的低穿透特性限制了对深层钙化的评估,而脂质或坏死内容物的介入会减弱光穿透,导致钙化评估不准确 [23] 。

5. 冠状动脉钙化的介入治疗

人们普遍认为,使用IVUS或OCT的血管内成像在评估钙化冠状动脉病变和识别支架膨胀不足的高风险特征方面发挥着关键作用 [24] 。

1) 切割球囊

切割球囊是将普通球囊与外科的微刀片有机结合的一种装置,可在充盈期间形成受控的纵向切口,可以扩张纤维或钙化病变。在处理钙化病灶时,切割球囊相较于普通球囊血管成形更有效,包括最终支架横截面积明显更大,管腔狭窄增益更大,术中并发症和术后血管不良事件减少 [25] 。

2) 非顺应性球囊

非顺应性球囊,相较于半顺应性球囊更有效和更安全,因为其在更高的充盈压力下更均匀地扩张病变。它们可成功用于轻度或轻度至中度钙化病变,而在重度钙化中,由于在高压下造成不对称扩张病变导致并发症(球囊破裂、冠状动脉夹层或穿孔) [26] 。

3) 冠状动脉内碎石

冠状动脉内碎石使用一个半顺应性球囊,在一个包含小发射器的支持导丝上推进,这些发射器产生火花,在球囊中产生膨胀的蒸汽泡,导致声波爆发,使浅表和深层钙破裂。这种疗法对浅表和深层钙都非常有效,对软组织没有影响,并改善血管顺应性 [27] 。

4) 旋切术

旋切术是经皮冠状动脉腔内成形术治疗严重钙化冠状动脉病变的有效工具,该技术是在专用导线上安装推进的金刚石覆盖的磨头,以极高速度旋转,导致动脉粥样钙化和纤维化材料的消融,从而保留软组织,从而允许更有效的球囊膨胀和成功的支架放置。对于球囊不可通过、连续或长钙化病变,冠状动脉内成像中理想的钙分布情况,可选旋切术。但是,与传统冠脉介入技术相比,该技术并发症的发生率更高,包括冠状动脉夹层、穿孔、慢血流/无复流现象、房室传导阻滞、旋转导丝断裂和旋磨头卡顿等 [28] 。

5) 准分子激光冠状动脉成形术

准分子激光冠状动脉成形术(ELCA)使用高能紫外光脉冲消融病变,该技术还可与旋切术联合应用,获取更大的收益。虽然ELCA用于钙化病变可能不是第一选择,但激光在改变钙化结构方面比其他策略有独特的优势 [29] 。

6. 总结与展望

尽管大量研究表明冠脉钙化发病的病理生理机制复杂多样,给寻找最佳药物靶点带来诸多困难,但对冠脉的探索从未停止过。本文综述了炎症,钙磷代谢失衡、程序性细胞死亡、内质网应激、线粒体功能障碍及肠道菌群等重要机制,同时总结目前冠状动脉钙化的主要影像学检查手段及介入治疗策略的研究进展。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] The WCOTROCHADIC (2023) Report on Cardiovascular Health and Diseases in China 2022: An Updated Summary. Biomedical and Environmental Sciences, 36, 669-701.
[2] Jernberg, T., Hasvold, P., Henriksson, M., et al. (2015) Cardiovascular Risk in Post-Myocardial Infarction Patients: Nationwide Real World Data Demonstrate the Importance of a Long-Term Perspective. European Heart Journal, 36, 1163-1170.
https://doi.org/10.1093/eurheartj/ehu505
[3] Lehmann, N., Erbel, R., Mahabadi, A.A., et al. (2018) Value of Progression of Coronary Artery Calcification for Risk Prediction of Coronary and Cardiovascular Events: Result of the HNR Study (Heinz Nixdorf Recall). Circulation, 137, 665-679.
https://doi.org/10.1161/CIRCULATIONAHA.116.027034
[4] 王伟民, 霍勇, 葛均波. 冠状动脉钙化病变诊治中国专家共识(2021版) [J]. 中国介入心脏病学杂志, 2021, 29(5): 251-259.
[5] Cozzolino, M., Ciceri, P., Galassi, A., et al. (2019) The Key Role of Phosphate on Vascular Calcification. Toxins, 11, Article 213.
https://doi.org/10.3390/toxins11040213
[6] Gambardella, J., Wang, X., Mone, P., et al. (2020) Genetics of Adrenergic Signaling Drives Coronary Artery Calcification. Atherosclerosis, 310, 88-90.
https://doi.org/10.1016/j.atherosclerosis.2020.07.025
[7] Li, M., Zhu, Y., Jaiswal, S.K. and Liu, N.F. (2021) Mitochondria Homeostasis and Vascular Medial Calcification. Calcified Tissue International, 109, 113-120.
https://doi.org/10.1007/s00223-021-00828-1
[8] Ribeiro-Silva, J.C., Nolasco, P., Krieger, J.E., et al. (2021) Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. International Journal of Molecular Sciences, 22, Article 10175.
https://doi.org/10.3390/ijms221810175
[9] Nafee, T., Shah, A., Forsberg, M., et al. (2023) State-Of-Art Review: Intravascular Imaging in Percutaneous Coronary Interventions. Cardiology Plus, 8, 227-246.
https://doi.org/10.1097/CP9.0000000000000069
[10] Wang, X., Liu, X., Qi, Y., et al. (2022) High Level of Serum Uric Acid Induced Monocyte Inflammation Is Related to Coronary Calcium Deposition in the Middle-Aged and Elder Population of China: A Five-Year Prospective Cohort Study. Journal of Inflammation Research, 15, 1859-1872.
https://doi.org/10.2147/JIR.S353883
[11] Shen, J., Zhao, M., Zhang, C., et al. (2021) IL-1beta in Atherosclerotic Vascular Calcification: From Bench to Bedside. International Journal of Biological Sciences, 17, 4353-4364.
https://doi.org/10.7150/ijbs.66537
[12] Wu, N., Liu, G.B., Zhang, Y.M., et al. (2022) MiR-708-5p/Pit-1 Axis Mediates High Phosphate-Induced Calcification in Vascular Smooth Muscle Cells via Wnt8b/β-Catenin Pathway. The Kaohsiung Journal of Medical Sciences, 38, 653-661.
https://doi.org/10.1002/kjm2.12542
[13] Zhang, L., Zhu, T., Miao, H., et al. (2021) The Calcium Binding Protein S100A11 and Its Roles in Diseases. Frontiers in Cell and Developmental Biology, 9, Article 693262.
https://doi.org/10.3389/fcell.2021.693262
[14] Fuchs, Y. and Steller, H. (2015) Live to Die another Way: Modes of Programmed Cell Death and the Signals Emanating From Dying Cells. Nature Reviews Molecular Cell Biology, 16, 329-344.
https://doi.org/10.1038/nrm3999
[15] Durham, A.L., Speer, M.Y., Scatena, M., et al. (2018) Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis and Arterial Stiffness. Cardiovascular Research, 114, 590-600.
https://doi.org/10.1093/cvr/cvy010
[16] Zhu, Y., Qu, J., He, L., et al. (2019) Calcium in Vascular Smooth Muscle Cell Elasticity and Adhesion: Novel Insights into the Mechanism of Action. Frontiers in Physiology, 10, Article 852.
https://doi.org/10.3389/fphys.2019.00852
[17] Liu, Y. and Shi, Y. (2020) Mitochondria as a Target in Cancer Treatment. MedComm, 1, 129-139.
https://doi.org/10.1002/mco2.16
[18] Zeng, Z.L., Yuan, Q., Zu, X. and Liu, J.H. (2022) Insights into the Role of Mitochondria in Vascular Calcification. Frontiers in Cardiovascular Medicine, 9, Article 879752.
https://doi.org/10.3389/fcvm.2022.879752
[19] Liu, Y.H., Peng, P., Hung, W.C., et al. (2023) Comparative Gut Microbiome Differences between High and Low Aortic Arch Calcification Score in Patients with Chronic Diseases. International Journal of Molecular Sciences, 24, Article 5673.
https://doi.org/10.3390/ijms24065673
[20] Pechlivanis, S., Moebus, S., Lehmann, N., et al. (2020) Genetic Risk Scores for Coronary Artery Disease and Its Traditional Risk Factors: Their Role in the Progression of Coronary Artery Calcification-Results of the Heinz Nixdorf Recall Study. PLOS ONE, 15, e0232735.
https://doi.org/10.1371/journal.pone.0232735
[21] Maehara, A. and Fitzgerald, P.J. (2000) Coronary Calcification: Assessment by Intravascular Ultrasound Imaging. Zeitschrift für Kardiologie, 89, S112-S116.
https://doi.org/10.1007/s003920070109
[22] Rahman, M.N., Nasir, A., Ullah, I., et al. (2023) Comparison of Clinical Outcomes of Calcified and Non-Calcified Coronary Artery Lesion Intervention under IVUS Guidance. Journal of the College of Physicians and Surgeons Pakistan, 33, 1355-1360.
https://doi.org/10.29271/jcpsp.2023.12.1355
[23] Prati, F., Gatto, L., Fabbiocchi, F., et al. (2020) Clinical Outcomes of Calcified Nodules Detected by Optical Coherence Tomography: A Sub-Analysis of the CLIMA Study. EuroIntervention, 16, 380-386.
https://doi.org/10.4244/EIJ-D-19-01120
[24] Truesdell, A.G., Alasnag, M.A., Kaul, P., et al. (2023) Intravascular Imaging during Percutaneous Coronary Intervention: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 81, 590-605.
https://doi.org/10.1016/j.jacc.2022.11.045
[25] Matsukawa, R., Kozai, T., Tokutome, M., et al. (2019) Plaque Modification Using a Cutting Balloon Is More Effective for Stenting of Heavily Calcified Lesion than Other Scoring Balloons. Cardiovascular Intervention and Therapeutics, 34, 325-334.
https://doi.org/10.1007/s12928-019-00578-w
[26] Secco, G.G., Buettner, A., Parisi, R., et al. (2019) Clinical Experience with Very High-Pressure Dilatation for Resistant Coronary Lesions. Cardiovascular Revascularization Medicine, 20, 1083-1087.
https://doi.org/10.1016/j.carrev.2019.02.026
[27] Tovar, F.M., Sardella, G., Salvi, N., et al. (2022) Coronary Lithotripsy for the Treatment of Underexpanded Stents: The International & Multicentre CRUNCH Registry. EuroIntervention, 18, 574-581.
https://doi.org/10.4244/EIJ-D-21-00545
[28] Sakakura, K., Ito, Y., Shibata, Y., et al. (2023) Clinical Expert Consensus Document on Rotational Atherectomy from the Japanese Association of Cardiovascular Intervention and Therapeutics: Update 2023. Cardiovascular Intervention and Therapeutics, 38, 141-162.
https://doi.org/10.1007/s12928-022-00906-7
[29] Mohandes, M., Rojas, S., Moreno, C., et al. (2020) Excimer Laser in Percutaneous Coronary Intervention of Device Uncrossable Chronic Total and Functional Occlusions. Cardiovascular Revascularization Medicine, 21, 657-660.
https://doi.org/10.1016/j.carrev.2019.08.022