罕见病诊疗现状及发展展望
Current Status and Future Prospects of Diagnosis and Treatment for Rare Diseases
DOI: 10.12677/acm.2024.1441076, PDF, HTML, XML, 下载: 20  浏览: 35 
作者: 桂俊峰, 李京蔚, 宋 萃*:重庆医科大学附属儿童医院内分泌科,重庆
关键词: 罕见病诊疗现状未来展望Rare Diseases Current Diagnosis and Treatment Status Future Prospects
摘要: 随着分子诊断技术的发展,疾病精准诊疗取得重大进展。罕见病是对分子诊断依赖较大的一类疾病,尽管其患病率低,但由于病种繁多,累积发病人数仍然庞大。目前,受医疗技术、医生经验、患者意识及经济水平等因素的影响,罕见病患者在诊治过程中仍面临较多困境。但随着技术的进步,分子诊断效率的提高,罕见病的早期诊断和个体化治疗有了希望。同时,基因编辑等新兴治疗策略的发展也为罕见病患者带来了更多治疗机会。我们期待未来罕见病研究的深入,疾病治疗的创新以及全球合作的加强,以提高罕见病的诊断率和治疗效果,减轻患者和社会的负担。本文综述了当前罕见病诊疗的现状,并总结了对未来的展望。
Abstract: With the evolution of molecular diagnostic technologies, there has been a significant leap forward in the precision diagnosis and treatment of diseases. Rare diseases, which exhibit a high dependency on molecular diagnostics. Despite their relatively low prevalence, the extensive variety of these diseases results in a considerable overall number of individuals affected. Currently, the management of rare diseases is complicated by factors such as medical technological advancements, physician expertise, patient awareness, and socioeconomic status, leading to numerous challenges in the diagnostic and therapeutic journey of these patients. However, with technological advancements and improvements in the efficiency of molecular diagnostics, there is newfound hope for the early detection and personalized management of rare diseases. Additionally, the development of innovative therapeutic strategies, including gene editing, has expanded the therapeutic possibilities for patients suffering from rare diseases. The anticipation is for a deepened research focus on rare diseases, innovative approaches in disease management, and enhanced global collaboration to improve diagnostic accuracy and therapeutic outcomes for rare diseases, thereby alleviating the burden on both patients and society at large. This review delineates the current landscape of diagnosis and treatment for rare diseases and summarizes the future outlook.
文章引用:桂俊峰, 李京蔚, 宋萃. 罕见病诊疗现状及发展展望[J]. 临床医学进展, 2024, 14(4): 681-688. https://doi.org/10.12677/acm.2024.1441076

1. 罕见病概述

罕见病(Rare Diseases, RDs)是指发病率、患病率都极低,很少见的疾病。用于预防、治疗、诊断罕见病的药品,由于市场需求小、研发成本高,很少有制药企业关注,因此被称为“孤儿药” [1] 。世界各国对于罕见病的定义存在一定差异,欧洲的定义是发病率低于1/2000的任何疾病 [2] ,美国的定义是患者人数少于200,000的疾病 [3] ,2010年,我国将罕见病定义为患病率低于1/500,000的或新生儿发病率低于1/10,000的疾病 [4] 。事实上,罕见病的国际定义尚未达成共识;一项报告总结了来自32个国际司法管辖区的1109个组织的296个定义。该报告指出罕见病发病率全球平均为40例/100,000人,平均患病率为1/2500 [5] 。截至2021年Orphanet收录了6172种独特的罕见病,其中71.9%具有遗传性,69.9%为儿童发病的疾病,保守估计全球受罕见病影响的人数为2.63~4.46亿人 [6] 。罕见病虽然单病种发病率低,但由于其病种丰富,累积受累人群不容小觑,可对个人及社会造成巨大影响 [7] 。

2. 罕见病的危害

2.1. 罕见病患者的健康负担

罕见病是一大类严重危害生命健康的疾病。2005年欧洲罕见病会议的报告分析了323种罕见病患者的预期寿命,提示25.7%的患者在5岁前可能夭折,36.8%的患者预期寿命缩短,只有约37.5%的患者寿命正常 [7] 。

2.2. 罕见病的社会及经济负担

从医疗资源的消耗来看,罕见病群体也值得关注,一项研究报道,45.4%的遗传性疾病患者在一年内入院5次或以上,26%入院10次或以上,而12.8%入院20次或以上 [8] ;另一项研究指出,罕见病患者平均住院时间为8.7天,较普通患者5.7天更长,住院费用比普通患者高出2.8倍,住院死亡率比普通患者高出4.5倍 [9] ;除了医疗资源消耗大,罕见病患者的生活成本也不低,且不同病种间差异巨大。例如,囊性纤维化患者的终生生活成本为287,591至1,907,384欧元,杜氏肌营养不良症约为541,593欧元,脆性X综合征为546,112至980,057欧元,血友病为133,024至258,025欧元 [10] ;除了生活成本显著增加,罕见病患者的生活质量(Quality of Life, QoL)亦需受到关注。研究指出,相较于其他重大疾病,某些罕见病对健康相关生活质量造成的负面影响更为严重。在众多情况下,尽管患者外表看似无恙,其社会心理功能却可能已遭受显著影响 [11] 。同时一项来自澳大利亚和新西兰的纳入了301名罕见病患儿家长的在线调查显示几乎一半的家庭因此而面临经济困难 [12] 。

2.3. 罕见病的社会及经济负担

目前,相对于常见病,罕见病患者的诊断也面临困境。在英国,罕见病患者得以确诊的平均时间为5.6年,而美国平均为7.6年 [13] 。这一方面是由于大量医务人员,特别是基层医务人员缺乏对这类疾病的认识,或者是患者不知道合适的就诊渠道,尤其是当前多数国家和地区缺乏专门的罕见病诊治中心;另一方面,罕见病由于具有表型和遗传异质性,即使是有经验的专家也难以直接作出诊断 [14] [15] 。同时,罕见病通常对多系统造成影响,这意味着它们可能被常见的复杂疾病症状所掩盖 [16] [17] 。这导致罕见病患者往往面临5~6年的延迟诊断,在得到确诊前平均经历了3~10名医生的误诊 [12] [18] ,延误诊断的原因包括卫生专业人员缺乏对相关罕见病的了解、家人缺乏症状意识以及难以获得检测 [19] 。

由于药物研发的成本高昂且孤儿药市场有限,使大量制药公司兴趣有限 [20] ,超过一半的罕见病研发受益于联邦基金,且一半以上药物年销售额低于100万美元 [21] 。罕见病不仅病种繁多,不同病种间差异巨大,即便同一病种也具有不同地区发病率差异大、临床异质性强等特点,导致许多罕见疾病还具有以下诊疗局限性:缺乏疾病的流行病学数据,对疾病的具体病因、病理生理学过程、发生机制、疾病自然病程等缺乏系统的认识;治疗和护理的结果差异大,难以量化;治疗的发展往往是碎片化和缓慢推进的;专业化和协调性的医疗因其复杂性和多维性而稀缺且昂贵;筛查策略和监测系统缺乏效率 [22] [23] 。

3. 罕见病领域相关进展

3.1. 资源投入及政策制定的进展

3.1.1. 国际进展

虽然罕见病目前在其诊断、治疗、管理等方面面临诸多困难,但在世界范围内,对于罕见病的关注及投入近年来仍呈持续提升的趋势。1983年的孤儿药法案得以获批,这为开发和销售治疗罕见疾病的新药提供了动力。自该法案获得批准以来,FDA已授予4780种孤儿药名称,批准了744种孤儿药。过去,FDA批准的所有药物中约有三分之一是孤儿药,但这个数字一直在上升:从2015年的47% (21/45)上升至目前的53%。对孤儿药年度支出的分析显示,美国2007年在罕见病药物的支出总额为150亿美元,2013年则上升至300亿美元 [24] 。美国孤儿药市场的增长速度是非孤儿药市场的两倍以上,2021~2026年复合年增长率为12%。到2026年,孤儿药将占所有处方药销售额的20%,占全球药品管道价值的近三分之一 [25] 。在政策制定方面,各个国家和地区也陆续出台相应的措施促进罕见病医学领域的发展和患者权益的保护。例如,在欧洲,第二届欧盟健康计划将罕见病确定为需求未得到满足的医疗保健优先事项;罕见病登记工作也在一些国家和地区开展和推进,这对于罕见病领域的循证个性化医疗做出重大贡献,因为它们可以用于多种目的,例如改进病例定义、修订疾病分类、评估治疗适应症和风险分层,以及现实条件下诊断和治疗策略的安全性、有效性、可行性、局限性和益处等 [26] 。

3.1.2. 中国进展

近年来,我国政府在罕见病领域也开展了系统的顶层设计以促进该领域的发展。自2018年5月由国家卫生健康委员会、科技部、工业和信息化部、国家药品监督管理局、国家中医药管理局等五部门联合发布《第一批罕见病目录》是中国首次官方定义罕见病,并将121个病种纳入目录,为开展罕见病的预防筛查,规范疾病诊疗以及药物政策和医保救助政策的制定提供了参考依据;2019年2月,国家卫健委于发布了《罕见病诊疗指南(2019年版)》,该指南了详细阐述了121个罕见病病种的流行病学、临床表现等疾病特征,并且发布了详细的诊疗流程和治疗原则,建立了全国罕见病诊疗协作网和全国罕见病病历诊疗信息登记制度。这不仅可以有效优化我国罕见病诊疗体系、提高罕见病诊疗水平,还为完善罕见病患者的医疗保障水平、明确罕见病药物研发方向提供了现实依据;2019年10月,中国罕见病联盟发布《罕见病药物卫生技术评估专家共识(2019)》,为开展罕见病卫生技术评估提供参考依据,可靠的卫生技术评估结果可为罕见病药品审批和医疗保险准入等相关决策提供循证支持;2022年中国罕见病联盟发布《多准则决策分析应用于罕见病药品临床综合评价的专家共识(2022)》对孤儿药进行多准则决策分析,旨在评估孤儿药价值,进一步构建符合我国国情的罕见病药品临床综合评价多元化体系 [27] 。

3.2. 诊断技术进展

据统计,71.9%的罕见病与遗传相关 [6] ,即由遗传物质改变导致,因此部分罕见病的诊断可依靠遗传病的诊断技术和方法,即综合利用病史、体格检查、实验室检查、染色体核型分析、基因测序技术、影像学检查等 [28] 。尤其是新生儿遗传代谢筛查,已经被认为是当今国际上早期发现罕见遗传代谢性病患儿的有效措施,在降低出生缺陷的三级预防措施中,是目前预防效果最显著,成本效益最佳措施之一 [29] 。

随着基因检测技术的发展,对患者进行基因检测,可以从分子水平发现罕见病病因,从而实现罕见病早期诊断的目的。人类的基因组变异包括单个核酸变异、拷贝数变异以及染色体结构变异、线粒体基因组变异以及表观遗传修饰改变等。针对不同的基因突变类型,可采用不用的检测方法,如:高通量测序(Next Generation Sequencing, NGS)、Sanger测序、单分子实时测序技术、纳米孔测序技术、多重连接探针扩增技术等。尤其是近十年来,由于NGS技术的出现,罕见病的诊断有了一种更高效、更经济的方法,新发现的疾病相关基因的数量在所有医学领域都呈指数增长 [30] 。NGS主要包括全外显子组测序(Whole Exome Sequencing, WES)和全基因组测序(Whole-Genome Sequencing, WGS) [31] 。相较于WGS,WES的优势在于其主要将测序限定在参与蛋白质编码的外显子区域,仅占人类基因组约1%的外显子,包含了85%的致病突变,所以WES或是一种性价比更高的测序方法 [32] 。据Neveling等学者的研究显示,WES的诊断率至少比Sanger测序高50% [33] 。但由于NGS技术的临床应用时间较短,所以对于发现的致病突变需要进一步用传统方法验证,对于意义不明的新突变,需要进一步进行功能研究,确定是否有病理意义 [34] 。而且随着多组学技术的发展,罕见病的诊断时间及诊断率都有明显上升,一项研究关于遗传学疾病的研究中,患儿获取结果平均时间为2.9天,诊断率为47% [35] 。

近年来,人工智能技术的高速发展使得越来越多的学者开始尝试将人工智能与罕见病诊断相结合。人工智能可以对罕见病数据库进行挖掘,如AMELIE可以帮助临床医生对文献进行快速的收集与处理,以协助对罕见病的快速诊断 [36] 。另一方面,通过人工智能对海量数据进行学习、建模,进而在NGS的变异分析、特殊面容的识别等方面帮助对罕见病进行诊断,从而在临床中大大提高了罕见病的诊断效率 [37] [38] 。目前已认为使用不同的人工智能算法分析非同义单核苷酸突变(Single Nucleotide Varients, SNV)是诊断罕见病可用的方法 [39] 。如变异效应评分工具(Variant Effect Scoring Tool, VEST)已被应用于诊断Miller和Freeman Sheldon综合征 [40] 、CliniPred可用于预测错义SNV的疾病相关性 [41] 、支持向量机(Support Vector Machine, SVM)算法被证明可用于普通易变型免疫缺陷中的单核苷酸多态性(Single Nucleotide Polymorphisms, SNPs) [42] 。一些应用于面部图像和神经成像的算法已被用于诊断罕见病,如Deep Gestalt来诊断Emanuel综合征和Pallister-Killian综合征 [43] 。

3.3. 治疗技术进展

随着对罕见病研究的不断深入,部分罕见病的病因及发病机制已为人所知,这为开发相应的治疗技术奠定了基础。目前,罕见病的治疗手段包括酶替代疗法、移植疗法、小分子药物、基因治疗、细胞治疗和单克隆抗体等。这些治疗手段的应用已经为患者带来了生存的希望和改善生活质量的机会。

小分子药物具有多种给药途径、剂量易于控制、稳定性高、便于产业化等优势。目前已经有一些小分子药物应用于临床治疗,例如用于治疗囊性纤维化跨膜传导调节器(Cystic Fibrosis Transmembrane Conductance Regulator, CFTR)基因缺陷引起的囊性纤维化的CFTR激活剂Kalydeco (ivacaftor) [44] ,用于存在凝血因子VIII抑制物的A型血友病预防的双特异抗体艾美赛珠单抗(emicizumab) [45] 等。由于新的筛选技术的出现以及合成化学和结构生物学领域的进步,使得发现和设计新生物活性分子成为可能。当前,在人类基因组中编码的约3000种与疾病相关的蛋白中,目前只有不到700种疾病存在被批准的靶向药物。因此,小分子药物仍然具有巨大的潜力。这意味着我们还有很大的机会开发出更多针对罕见病和其他疾病的治疗药物,以帮助更多的患者 [46] 。

基因治疗是一种通过载体将目标基因导入宿主细胞,以替换缺陷基因或直接插入宿主基因组进行复制的治疗方法。目前已经有多种基因治疗方法用于治疗罕见病。腺相关病毒(Adeno-Associated Virus, AAV)因其低致病性、低免疫原性和能够持续表达的特性,被认为是最适合用作基因治疗的病毒载体,尤其适用于需要长期基因修饰的疾病治疗。AAV基因治疗的发展为罕见病患者提供了新的治疗选择,为他们带来了更大的希望 [47] 。如Glybera (alipogene tiparvovec)是一种基于AVV1的载体,通过肌肉注射将人脂蛋白脂肪酶(LPL)互补脱氧核糖核酸(complementary DNA, cDNA)递送至肌肉细胞用于治疗家族性脂蛋白脂肪酶缺乏症,这也是第一个在西方国家获得批准的基因治疗 [48] 。基于AVV9作为病毒载体的Zolgensma (Onasemnogene abeparvovec)被批准用于治疗2岁以下患有运动神经元存活基因1等位突变导致的脊髓性肌萎缩症的儿童患者 [49] ,基于AAV2作为病毒载体的Luxturna (voretigene neparvovec-rzyl)被批准用于治疗有类视黄醇异构水解酶RPE65 (OMIM*180069)突变相关视网膜营养性萎缩的患者 [50] 。此外慢病毒、γ逆转录病毒等也成功应用于部分罕见病的造血干细胞治疗,如β-地中海贫血 [51] 、重症联合免疫缺陷(Severe Combined Immunodeficiency, SCID) [52] 等。除此之外,利用siRNA的抑制转录功能发展起来的RNA干扰技术也逐渐开始了临床应用,它可以通过敲除靶mRNA来抑制缺陷基因的表达,基于该技术的Lumasiran在治疗原发性高草酸尿症1型中取得了良好的效果 [53] 。

细胞治疗根据细胞的来源可以分为免疫细胞治疗和干细胞治疗,包括了造血干细胞(Hematopoietic Stem Cells, HSC)、诱导多能干细胞(Induced pluripotent stem cells)、胚胎干细胞(Embryonic Stem Cells, ESC)、间充质基质细胞(Mesenchymal Stromal Cells, MSCs)等。目前细胞治疗中应用得最多的是罕见血液免疫系统疾病,利用自体或供体的HSC,并且可对其进行基因改造,再将其移植入患者体内,恢复患者正常细胞功能,特别是SCID,这是第一种通过造血干细胞疗法成功治疗的疾病 [54] 。除HSC外,MSCs也被成功用于治疗成骨不全症(Osteogenesis Imperfecta, OI),甚至被用于在胎儿期进行子宫内注射从而进行早期干预 [55] ,使用ESC治疗罕见视网膜病变也被证明是一种可靠的治疗方式 [56] 。

4. 未来展望

罕见病存在病种丰富、单病种发病率低、累积受累患者多、临床及遗传背景异质性强、患者受累组织器官多、资源消耗大、诊断及治疗对先进的医疗技术依赖性强等特点,是一类诊断、治疗、管理极具挑战的疾病!随着精准医学时代的来临,罕见病在资源投入、政策制定、诊断、治疗、综合管理等方面有了巨大的进步,但未来仍需通过技术的迭代,促进对这类疾病的认识及诊疗。

NOTES

*通讯作者。

参考文献

[1] World Health Organization (2006) The Selection and Use of Essential Medicines: Report of the WHO Expert Committee, 2005; (Including the 14th Model List of Essential Medicines); [WHO Expert Committee on the Selection and Use of Essential Medicines, Geneva, 7-11 March 2005]. World Health Organization, Geneva.
[2] Franco, P. (2013) Orphan Drugs: The Regulatory Environment. Drug Discovery Today, 18, 163-172.
https://doi.org/10.1016/j.drudis.2012.08.009
[3] Arno, P.S., Bonuck, K. and Davis, M. (1995) Rare Diseases, Drug Development, and AIDS: The Impact of the Orphan Drug Act. The Milbank Quarterly, 73, 231-252.
https://doi.org/10.2307/3350258
[4] 马端, 李定国, 张学. 中国罕见病防治的机遇与挑战[J]. 中国循证儿科杂志, 2011, 6(2): 81-82.
[5] Richter, T., Nestler-Parr, S., Babela, R., et al. (2015) Rare Disease Terminology and Definitions—A Systematic Global Review: Report of the ISPOR Rare Disease Special Interest Group. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research, 18, 906-914.
https://doi.org/10.1016/j.jval.2015.05.008
[6] Nguengang, W.S., Lambert, D.M., Olry, A., et al. (2020) Estimating Cumulative Point Prevalence of Rare Diseases: Analysis of the Orphanet Database. European Journal of Human Genetics: EJHG, 28, 165-173.
https://doi.org/10.1038/s41431-019-0508-0
[7] Ferreira, C.R. (2019) The Burden of Rare Diseases. American Journal of Medical Genetics. Part A, 179, 885-892.
https://doi.org/10.1002/ajmg.a.61124
[8] Hall, J.G., Powers, E.K., Mcllvaine, R.T., et al. (1978) The Frequency and Financial Burden of Genetic Disease in a Pediatric Hospital. American Journal of Medical Genetics, 1, 417-436.
https://doi.org/10.1002/ajmg.1320010405
[9] Yoon, P.W. (1997) Contribution of Birth Defects and Genetic Diseases to Pediatric Hospitalizations: A Population-Based Study. Archives of Pediatrics & Adolescent Medicine, 151, 1096-1103.
https://doi.org/10.1001/archpedi.1997.02170480026004
[10] Angelis, A., Tordrup, D. and Kanavos, P. (2015) Socio-Economic Burden of Rare Diseases: A Systematic Review of Cost of Illness Evidence. Health Policy (Amsterdam, Netherlands), 119, 964-979.
https://doi.org/10.1016/j.healthpol.2014.12.016
[11] Cohen, J.S. and Biesecker, B.B. (2010) Quality of Life in Rare Genetic Conditions: A Systematic Review of the Literature. American Journal of Medical Genetics. Part A, 152, 1136-1156.
https://doi.org/10.1002/ajmg.a.33380
[12] Pelentsov, L.J., Fielder, A.L., Laws, T.A., et al. (2016) The Supportive Care Needs of Parents with a Child with a Rare Disease: Results of an Online Survey. BMC Family Practice, 17, Article No. 88.
https://doi.org/10.1186/s12875-016-0488-x
[13] The Lancet Diabetes Endocrinology (2019) Spotlight on Rare Diseases. The Lancet. Diabetes & Endocrinology, 7, 75.
https://doi.org/10.1016/S2213-8587(19)30006-3
[14] Kvarnung, M. and Nordgren, A. (2017) Intellectual Disability & Rare Disorders: A Diagnostic Challenge. In: de la Paz, M.P., Taruscio, D. and Groft, S.C., Eds., Rare Diseases Epidemiology: Update and Overview, Springer, Berlin, 39-54.
https://doi.org/10.1007/978-3-319-67144-4_3
[15] Almalki, Z.S., Alahmari, A.K., Guo, J.J., et al. (2012) Access to Orphan Drugs in the Middle East: Challenge and Perspective. Intractable & Rare Diseases Research, 1, 139-143.
https://doi.org/10.5582/irdr.2012.v1.4.139
[16] Giovannini, M., Luzzati, M., Ferrara, G., et al. (2018) Common Symptoms for a Rare Disease in a Girl with Sarcoidosis: A Case Report. Italian Journal of Pediatrics, 44, Article No. 74.
https://doi.org/10.1186/s13052-018-0517-6
[17] Girirajan, S., Rosenfeld, J.A., Coe, B.P., et al. (2012) Phenotypic Heterogeneity of Genomic Disorders and Rare Copy-Number Variants. The New England Journal of Medicine, 367, 1321-1331.
https://doi.org/10.1056/NEJMoa1200395
[18] Anderson, M., Elliott, E.J. and Zurynski, Y.A. (2013) Australian Families Living with Rare Disease: Experiences of Diagnosis, Health Services Use and Needs for Psychosocial Support. Orphanet Journal of Rare Diseases, 8, Article No. 22.
https://doi.org/10.1186/1750-1172-8-22
[19] Zurynski, Y., Deverell, M., Dalkeith, T., et al. (2017) Australian Children Living with Rare Diseases: Experiences of Diagnosis and Perceived Consequences of Diagnostic Delays. Orphanet Journal of Rare Diseases, 12, Article No. 68.
https://doi.org/10.1186/s13023-017-0622-4
[20] Kempf, L., Goldsmith, J.C. and Temple, R. (2018) Challenges of Developing and Conducting Clinical Trials in Rare Disorders. American Journal of Medical Genetics. Part A, 176, 773-783.
https://doi.org/10.1002/ajmg.a.38413
[21] Asbury, C.H. (1991) The Orphan Drug Act. The First 7 Years. JAMA, 265, 893-897.
https://doi.org/10.1001/jama.1991.03460070075046
[22] Fantini, B. and Vaccaro, C.M. (2019) Value Based Healthcare for Rare Diseases: Efficiency, Efficacy, Equity. Annali DellIstituto Superiore Di Sanita, 55, 251-257.
[23] Ahmed, M.A., Okour, M., Brundage, R., et al. (2019) Orphan Drug Development: The Increasing Role of Clinical Pharmacology. Journal of Pharmacokinetics and Pharmacodynamics, 46, 395-409.
https://doi.org/10.1007/s10928-019-09646-3
[24] Divino, V., DeKoven, M., Kleinrock, M., et al. (2016) Orphan Drug Expenditures in the United States: A Historical and Prospective Analysis, 2007-18. Health Affairs (Project Hope), 35, 1588-1594.
https://doi.org/10.1377/hlthaff.2016.0030
[25] Senior, M. (2022) Orphan Drugs: From Niche to Mainstream. MJH Life Sciences, 42, 32-33.
[26] Kölker, S., Gleich, F., Mütze, U., et al. (2022) Rare Disease Registries Are Key to Evidence-Based Personalized Medicine: Highlighting the European Experience. Frontiers in Endocrinology, 13, Article ID: 832063.
https://doi.org/10.3389/fendo.2022.832063
[27] 张波, 张抒扬, 屈静晗, 等. 多准则决策分析应用于罕见病药品临床综合评价的专家共识(2022) [J]. 罕见病研究, 2022, 1(2): 158-177.
[28] Marwaha, S., Knowles, J.W. and Ashley, E.A. (2022) A Guide for the Diagnosis of Rare and Undiagnosed Disease: Beyond the Exome. Genome Medicine, 14, Article No. 23.
https://doi.org/10.1186/s13073-022-01026-w
[29] 顾学范, 韩连书, 余永国. 中国新生儿遗传代谢病筛查现状及展望[J]. 罕见病研究, 2022, 1(1): 13-19.
[30] Fernández-Marmiesse, A., Gouveia, S. and Couce, M.L. (2018) NGS Technologies as a Turning Point in Rare Disease Research, Diagnosis and Treatment. Current Medicinal Chemistry, 25, 404-432.
https://doi.org/10.2174/0929867324666170718101946
[31] Souche, E., Beltran, S., Brosens, E., et al. (2022) Recommendations for Whole Genome Sequencing in Diagnostics for Rare Diseases. European Journal of Human Genetics, 30, 1017-1021.
https://doi.org/10.1038/s41431-022-01113-x
[32] Choi, M., Scholl, U.I., Ji, W., et al. (2009) Genetic Diagnosis by Whole Exome Capture and Massively Parallel DNA Sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106, 19096-19101.
https://doi.org/10.1073/pnas.0910672106
[33] Neveling, K., Feenstra, I., Gilissen, C., et al. (2013) A Post-Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases. Human Mutation, 34, 1721-1726.
https://doi.org/10.1002/humu.22450
[34] 喻长顺, 于世辉. 罕见病及其基因诊断的发展现状[J]. 海南医学, 2019, 30(S1): 56-67.
[35] Lunke, S., Bouffler, S.E., Patel, C.V., et al. (2023) Integrated Multi-Omics for Rapid Rare Disease Diagnosis on a National Scale. Nature Medicine, 29, 1681-1691.
https://doi.org/10.1038/s41591-023-02401-9
[36] Birgmeier, J., Haeussler, M., Deisseroth, C.A., et al. (2020) AMELIE Speeds Mendelian Diagnosis by Matching Patient Phenotype and Genotype to Primary Literature. Science Translational Medicine, 12, Eaau9113.
https://doi.org/10.1126/scitranslmed.aau9113
[37] Sundaram, L., Gao, H., Padigepati, S.R., et al. (2018) Predicting the Clinical Impact of Human Mutation with Deep Neural Networks. Nature Genetics, 50, 1161-1170.
https://doi.org/10.1038/s41588-018-0167-z
[38] Jaganathan, K., Panagiotopoulou, S.K., McRae, J.F., et al. (2019) Predicting Splicing from Primary Sequence with Deep Learning. Cell, 176, 535-548.E24.
https://doi.org/10.1016/j.cell.2018.12.015
[39] Brasil, S., Pascoal, C., Francisco, R., et al. (2019) Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter? Genes, 10, Article No. 978.
https://doi.org/10.3390/genes10120978
[40] Carter, H., Douville, C., Stenson, P.D., et al. (2013) Identifying Mendelian Disease Genes with the Variant Effect Scoring Tool. BMC Genomics, 14, S3.
https://doi.org/10.1186/1471-2164-14-S3-S3
[41] Alirezaie, N., Kernohan, K.D., Hartley, T., et al. (2018) ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants. American Journal of Human Genetics, 103, 474-483.
https://doi.org/10.1016/j.ajhg.2018.08.005
[42] Orange, J.S., Glessner, J.T., Resnick, E., et al. (2011) Genome-Wide Association Identifies Diverse Causes of Common Variable Immunodeficiency. The Journal of Allergy and Clinical Immunology, 127, 1360-1367.E6.
https://doi.org/10.1016/j.jaci.2011.02.039
[43] Liehr, T., Acquarola, N., Pyle, K., et al. (2018) Next Generation Phenotyping in Emanuel and Pallister-Killian Syndrome Using Computer-Aided Facial Dysmorphology Analysis of 2D Photos. Clinical Genetics, 93, 378-381.
https://doi.org/10.1111/cge.13087
[44] Hoy, S.M. (2019) Elexacaftor/Ivacaftor/Tezacaftor: First Approval. Drugs, 79, 2001-2007.
https://doi.org/10.1007/s40265-019-01233-7
[45] Oldenburg, J., Mahlangu, J.N., Kim, B., et al. (2017) Emicizumab Prophylaxis in Hemophilia A with Inhibitors. The New England Journal of Medicine, 377, 809-818.
https://doi.org/10.1056/NEJMoa1703068
[46] Tambuyzer, E., Vandendriessche, B., Austin, C.P., et al. (2020) Therapies for Rare Diseases: Therapeutic Modalities, Progress and Challenges Ahead. Nature Reviews. Drug Discovery, 19, 93-111.
https://doi.org/10.1038/s41573-019-0049-9
[47] Li, C. and Samulski, R.J. (2020) Engineering Adeno-Associated Virus Vectors for Gene Therapy. Nature Reviews Genetics, 21, 255-272.
https://doi.org/10.1038/s41576-019-0205-4
[48] Scott, L.J. (2015) Alipogene Tiparvovec: A Review of Its Use in Adults with Familial Lipoprotein Lipase Deficiency. Drugs, 75, 175-182.
https://doi.org/10.1007/s40265-014-0339-9
[49] Shahryari, A., Saghaeian, J.M., Mohammadi, S., et al. (2019) Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Frontiers in Genetics, 10, Article No. 868.
https://doi.org/10.3389/fgene.2019.00868
[50] Smalley, E. (2017) First AAV Gene Therapy Poised for Landmark Approval. Nature Biotechnology, 35, 998-999.
https://doi.org/10.1038/nbt1117-998
[51] Cavazzana-Calvo, M., Payen, E., Negre, O., et al. (2010) Transfusion Independence and HMGA2 Activation after Gene Therapy of Human β-Thalassaemia. Nature, 467, 318-322.
https://doi.org/10.1038/nature09328
[52] Aiuti, A., Slavin, S., Aker, M., et al. (2002) Correction of ADA-SCID by Stem Cell Gene Therapy Combined with Nonmyeloablative Conditioning. Science (New York, N.Y.), 296, 2410-2413.
https://doi.org/10.1126/science.1070104
[53] Garrelfs, S.F., Frishberg, Y., Hulton, S.A., et al. (2021) Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. The New England Journal of Medicine, 384, 1216-1226.
https://doi.org/10.1056/NEJMoa2021712
[54] Pai, S.-Y., Logan, B.R., Griffith, L.M., et al. (2014) Transplantation Outcomes for Severe Combined Immunodeficiency, 2000-2009. The New England Journal of Medicine, 371, 434-446.
https://doi.org/10.1056/NEJMoa1401177
[55] Chan, J.K.Y. and Götherström, C. (2014) Prenatal Transplantation of Mesenchymal Stem Cells to Treat Osteogenesis Imperfecta. Frontiers in Pharmacology, 5, Article No. 223.
https://doi.org/10.3389/fphar.2014.00223
[56] Schwartz, S.D., Regillo, C.D., Lam, B.L., et al. (2015) Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium in Patients with Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: Follow-Up of Two Open-Label Phase 1/2 Studies. The Lancet (London, England), 385, 509-516.
https://doi.org/10.1016/S0140-6736(14)61376-3