氧化应激在激素性股骨头坏死发病机制中的研究进展
Research Progress on Oxidative Stress in the Pathogenesis of Steroid-Induced Osteonecrosis of the Femoral Head
摘要: 大量研究表明,氧化应激参与了激素性股骨头坏死(SONFH)的发病过程。活性氧(ROS)在维持细胞正常功能中起着至关重要的作用,但在氧化应激状态下,过量的ROS会导致多种细胞损伤,引起疾病发生。氧化应激引起血管内皮损伤、间充质干细胞功能障碍、成骨细胞及骨细胞凋亡、破骨细胞过度活化,导致SONFH发生。本文就氧化应激在SONFH发病机制中的研究进展作一综述。
Abstract: Considerable evidence suggests that oxidative stress is involved in the pathogenesis of steroid- induced osteonecrosis of the femoral head (SONFH). Reactive oxygen species (ROS) play a crucial role in maintaining normal cellular function, but excessive ROS under oxidative stress conditions can lead to various forms of cellular damage, contributing to disease onset. Oxidative stress induces endothelial injury, dysfunction of mesenchymal stem cells, apoptosis of osteoblasts and osteocytes, and excessive activation of osteoclasts, resulting in the occurrence of SONFH. This review provides an overview of the research progress on oxidative stress in the pathogenesis of SONFH.
文章引用:董善坤, 孙水. 氧化应激在激素性股骨头坏死发病机制中的研究进展[J]. 临床医学进展, 2024, 14(4): 526-533. https://doi.org/10.12677/acm.2024.1441055

1. 引言

股骨头坏死是各种原因引起的获得性股骨头缺血性疾病,伴有剧烈疼痛和进行性髋关节功能障碍 [1] 。随着糖皮质激素(GCs)的广泛应用,激素性股骨头坏死(SONFH)发病率已位居非创伤性股骨头坏死的首位 [2] 。SONFH的主要病理特点为软骨下骨微骨折、骨髓水肿和进行性股骨头塌陷 [3] [4] [5] 。SONFH的发生起源于微循环障碍和成骨细胞坏死。疾病早期,MRI能够检测到髓内水肿区域,但CT显示软骨下骨微结构没有明显变化。随着骨坏死的发生,修复过程启动,但破骨细胞介导的骨吸收超过了成骨细胞介导的骨形成,导致软骨下骨小梁净流失。随着病情进展,骨量的减少和微结构的改变影响了股骨头的完整性,最终塌陷和畸形 [6] 。近年的研究表明,氧化应激在SONFH的发病过程中起着重要作用,使用抗氧化剂或激活抗氧化基因的表达能够一定程度抑制其病理进展 [7] [8] [9] [10] [11] 。本文就氧化应激在SONFH发病机制中的研究进展进行综述。

2. 氧化应激简述

氧化应激是指活性氧(ROS)的产生与内源性抗氧化防御机制之间的失衡,即ROS水平过高。ROS可分为两类:一是具有未成对电子的氧分子,包括超氧阴离子自由基、羟基自由基、脂质过氧自由基和一氧化氮自由基;二是处于激发态的氧分子,即单线态氧 [12] 。体内ROS主要来源于线粒体呼吸链反应、NADPH氧化酶(NOX)、黄嘌呤氧化酶(XO)和一氧化氮合酶(NOS)等 [13] 。生理状态下,ROS在细胞稳态中起着至关重要的作用。ROS参与细胞内外的氧化还原平衡调节,维持细胞内环境的稳定性。ROS作为细胞信号分子,参与调节多种信号通路。线粒体呼吸链中产生的超氧阴离子能够被超氧化物歧化酶(SODs)转化成过氧化氢(H2O2),进而氧化蛋白质上的半胱氨酸残基,以启动氧化还原信号传导 [14] 。同时,H2O2介导HIFs、PI3K、NF-κB、MAPK等通路的激活,参与细胞正常的新陈代谢、生长和增殖等过程 [15] [16] 。此外,ROS介导促炎细胞因子(IL-1β, TNFα, IFN)的释放,并作为免疫细胞中重要的第二信使,通过调节细胞间信号传导影响炎症过程 [17] [18] [19] 。

过量的ROS会导致细胞和组织损伤。当细胞内氧化还原平衡失衡时,抗氧化防御系统(如超氧化物歧化酶、谷胱甘肽还原酶等)的活性受损,进一步加剧了氧化应激。过量的ROS引发脂质过氧化,破坏细胞膜完整性,影响细胞内外物质的交换和信号传导 [20] 。ROS还能氧化蛋白质的硫基、羧基、酰胺基等,改变其结构和功能,甚至形成氧化蛋白聚集体,导致细胞功能障碍 [21] 。此外,ROS还会引发DNA单链和双链断裂、碱基修饰和交联等损伤,导致基因突变、染色体异常和细胞死亡。氧化应激使细胞内的凋亡通路过度激活,并通过影响凋亡相关蛋白(如Bcl-2家族、Caspase家族)的表达和活性,诱导细胞凋亡 [22] 。过量的ROS还会导致核因子κB (NF-κB)和其他炎症信号通路过度激活,促进炎症因子(如肿瘤坏死因子-α、白细胞介素等)的过度释放,进一步加剧细胞和组织损伤 [23] 。因此,GCs引起的氧化应激可能是SONFH进展的重要原因。

3. 氧化应激在SONFH中的作用机制

3.1. 血管内皮细胞损伤

微循环障碍被认为是SONFH发生的始动因素,其中血管内皮损伤起着重要作用 [24] [25] [26] 。血管内皮是覆盖在血管系统表面的单层上皮,是血液和血管壁之间的物理屏障,在维持血管内稳态中发挥着重要作用。

氧化应激会导致内皮功能障碍及程序性死亡(细胞焦亡、铁死亡等) [27] 。在ROS介导的内皮功能障碍过程中,促炎细胞因子如IL-1β、IL-18,以及ICAM-1、VCAM-1和E-选择素等细胞粘附分子表达增强,从而引发炎症反应 [28] 。氧化应激还会激活NF-κB通路,促进TNF-α等炎症因子表达;炎症因子又反过来促进内皮细胞中线粒体ROS生成、NADPH氧化酶活性和iNOS表达,进一步加剧氧化应激及炎症反应,形成恶性循环 [29] [30] 。NO是重要的血管扩张剂,对血管具有保护作用。ROS及炎症因子通过增加超氧化物歧化酶水平导致NO失活,从而导致血管屏障破坏、血管舒缩功能障碍,影响局部血流调节和血管活性分子的释放 [31] [32] 。新的研究表明,天然化合物如苯丙素、黄酮类、萜类和生物碱等可激活Nrf2/HO-1减轻氧化应激导致的血管内皮细胞凋亡 [33] 。综上所述,氧化应激能够介导血管内皮细胞功能障碍或死亡,引起血管屏障破坏、血管痉挛、局部炎症浸润,从而阻碍股骨头正常的血液供应,导致骨组织损伤。

3.2. 间充质干细胞功能障碍

间充质干细胞(MSCs)具有多向分化潜能,可以分化为成骨细胞、软骨细胞、脂肪细胞等多种细胞类型,其成骨分化能力的变化与SONFH密切相关 [34] 。MSCs通常具有低水平的细胞内ROS和高水平的谷胱甘肽。低水平的ROS促进MSCs成骨分化,氧化应激则会促进成脂分化甚至导致细胞周期停滞和凋亡 [35] 。SONFH发生后,坏死区会形成氧化应激微环境,进一步影响MSCs的正常功能 [36] 。

过量的ROS通过激活FOXO转录因子抑制Wnt/β‐catenin信号转导,同时通过下调MSCs中Gli蛋白水平抑制Hedgehog信号传导,损害MSCs的成骨作用 [37] [38] 。ROS还可增加MSCs关键成脂转录因子CCAAT/增强子结合蛋白(C/EBP)和过氧化物酶体增殖物激活受体(PPAR) γ的表达促进脂肪生成 [39] [40] 。此外,过量的ROS激活JNK、p38、ERK等MAPK通路,诱导促凋亡蛋白Bax和Caspase-3的表达,导致MSCs凋亡 [41] 。因此,氧化应激能减少成骨细胞数量,阻碍新生骨形成;同时引起脂肪细胞过度增殖,诱发骨内高压,干扰骨内微循环,进一步加剧骨破坏。

实验证实,硒代蛋氨酸可通过PTEN/PI3K/AKT途径调节的抗氧化作用减轻H2O2诱导的MSCs分化障碍 [42] 。线粒体自噬可以通过破坏线粒体来减少ROS的产生,诱导MSCs自噬能够促进成骨分化 [43] 。抗氧化蛋白PARK7过表达能减少氧化应激诱导的MSCs凋亡 [44] 。青蒿素通过激活c-Raf/Erk1/2/ p90rsk/CREB减轻ROS诱导的MSCs凋亡,而辅酶Q10和牛磺熊去氧胆酸则通过调节Nrf-2/NQO-1信号通路发挥抗氧化和抗凋亡作用 [45] [46] [47] 。这些结果表明,氧化应激与MSCs的功能障碍密切相关,通过影响骨组织修复能力加速股骨头坏死的发展。

3.3. 成骨细胞分化障碍和骨细胞凋亡

成骨细胞主要由MSCs分化产生,在调节骨基质的合成、分泌和矿化中发挥成骨作用 [48] 。在骨形成的末期,成骨细胞被包裹在骨基质中并成熟为骨细胞,在骨重塑中发挥着至关重要的作用 [49] 。研究表明,大剂量GCs诱导ROS产生并导致骨细胞和成骨细胞凋亡,且涉及多种分子机制。GCs提高成骨细胞内ROS水平从而激活PI3K/AKT/GSK3β信号通路,进而增加促凋亡基因cleaved-caspase 3、cleaved-caspase 9的表达诱导成骨细胞凋亡 [50] 。GCs能够激活p66shc增加成骨细胞线粒体中ROS的生成,从而激活ROS/PKCβ/p66shc/JNK信号级联诱导成骨细胞凋亡;而抗氧化剂N-乙酰半胱氨酸(NAC)或敲除p66shc可阻止JNK的激活,减轻GCs诱导的成骨细胞损伤 [51] 。FoxO转录因子家族通过调节抗氧化酶(如MnSOD和过氧化氢酶)介导抗氧化作用,应用抗氧化剂或上调FOXO表达均可以阻止GCs诱导的成骨细胞凋亡 [52] 。高剂量GCs会显著增加成骨细胞中NOX1来源的ROS生成,进而激活MAPK通路诱导成骨细胞凋亡;通过siRNA沉默NOX1能有效阻碍ROS生成和细胞凋亡 [53] 。此外,外源性H2O2诱导成骨前体细胞中ERK和NF-κB激活,增强Bax的表达和线粒体膜电位的超极化,抑制成骨标志物如碱性磷酸酶(ALP)、I型胶原的形成;使用ERKs和NF-κB特异性抑制剂能逆转这一过程 [54] [55] 。动物实验显示,经大剂量GCs处理后,实验动物股骨头骨小梁密度和厚度降低,骨细胞空洞增加,并观察到氧化损伤诱导的骨细胞凋亡,而激活抗氧化通路能够将其改善 [10] [11] ,进一步印证了氧化应激在GCs诱导的成骨细胞及骨细胞凋亡中起重要作用。

此外,成骨细胞和骨细胞产生的VEGF已被证明可以耦合骨形成和血管生成,而氧化应激引起的骨细胞凋亡能够干扰VEGF的产生和作用以及破坏内皮血管生成 [56] [57] 。供血不足带来的缺氧进一步加剧骨细胞凋亡,干扰新骨形成,形成恶性循环,加剧股骨头结构的破坏。

3.4. 破骨细胞过度激活

破骨细胞是源自单核/巨噬细胞谱系并通过单核前体细胞融合产生的多核细胞,是人体内唯一具有骨吸收功能的细胞 [58] 。破骨细胞活化依赖NF-κB配体受体激活剂(RANKL)系列信号转导通路,ROS在其中起重要调节作用。RANKL可通过TRAF6/RAC1/Nox1信号级联提高破骨前体细胞中的ROS水平,进而激活NF-κB促进破骨细胞的分化。此外,ROS可激活丝裂原活化蛋白激酶(MAPKs),促进RANKL诱导的破骨细胞生成 [59] 。ROS还可刺激破骨细胞转录因子c-Fos、NFATc1的表达,从而促进抗酒石酸磷酸酶(TRAP)和酪蛋白酶K (CTSK)的合成,导致骨吸收增强 [60] 。诱导破骨细胞自噬能抑制其分化和骨吸收功能 [61] 。ROS清除剂剂罗布麻素、NOX抑制剂ML171、黄嘌呤氧化酶抑制剂DPI等可抑制骨吸收 [62] 。诸多天然抗氧化剂如黄酮类、生物碱类、香豆素类等具有抑制破骨细胞活化、减轻骨破坏的作用 [63] 。GCs可显著抑制破骨前体细胞中Nrf2核转位,阻碍其诱导的抗氧化基因激活,引起氧化应激,而激活Nrf2可显著抑制破骨细胞活化并减轻SONFH发生 [8] [11] 。人与动物SONFH的股骨头标本均检测到过量ROS和过度激活的破骨细胞 [6] [64] ,进一步证实了GCs诱导的氧化应激在破骨细胞活化及SONFH中起重要作用。

破骨细胞和成骨细胞相互调节,共同维持骨重塑平衡。成骨细胞与破骨细胞前体细胞的共培养表明,过量的ROS通过抑制成骨细胞中Wnt/β-catenin/OPG信号通路来降低其对RANKL的阻断作用,同时通过激活蛋白激酶(ERKs、JNK等)增加RANKL表达,导致破骨细胞过度活化 [65] [66] 。成骨细胞分化障碍和破骨细胞过度活化共同导致骨重塑紊乱,加剧股骨头结构的破坏。

4. 小结

SONFH发病机制十分复杂,涉及诸多学说。迄今为止,关于氧化应激在SONFH发生发展中的作用机制已取得很大进展,但其具体机制仍未完全阐明,还需进行更进一步的基础研究和临床对照研究。可以明确的是,GCs诱发的氧化应激影响血管内皮细胞、骨髓间充质干细胞、成骨细胞和破骨细胞等正常功能,从而破坏股骨头的血供和骨重塑过程,最终导致股骨头结构破坏。对氧化应激与SONFH发生机制的深入研究可为其防治提供理论基础,相信未来有望为患者提供更加安全、有效的治疗新策略。

NOTES

*通讯作者。

参考文献

[1] Guerado, E. and Caso, E. (2016) The Physiopathology of Avascular Necrosis of the Femoral Head: An Update. Injury, 47, S16-S26.
https://doi.org/10.1016/S0020-1383(16)30835-X
[2] Al-Otaibi, M.L. (2022) An Overview of Pathophysiology and Treatment Options of Osteonecrosis of Femoral Head in Sickle Cell Disease. Saudi Medical Journal, 43, 1192-1199.
https://doi.org/10.15537/smj.2022.43.11.20220429
[3] Zhang, Q.Y., Li, Z.R., Gao, F.Q., et al. (2018) Pericollapse Stage of Osteonecrosis of the Femoral Head: A Last Chance for Joint Preservation. Chinese Medical Journal (England), 131, 2589-2598.
https://doi.org/10.4103/0366-6999.244111
[4] Schwarz Lausten, G. (1999) Non-Traumatic Necrosis of the Femoral Head. International Orthopaedics, 23, 193-197.
https://doi.org/10.1007/s002640050348
[5] Chen, Y., Miao, Y., Liu, K.Y., et al. (2022) Evolutionary Course of the Femoral Head Osteonecrosis: Histopathological-Radiologic Characteristics and Clinical Staging Systems. Journal of Orthopaedic Translation, 32, 28-40.
https://doi.org/10.1016/j.jot.2021.07.004
[6] Chen, K., Liu, Y.H., He, J.B., et al. (2020) Steroid-Induced Osteonecrosis of the Femoral Head Reveals Enhanced Reactive Oxygen Species and Hyperactive Osteoclasts. International Journal of Biological Sciences, 16, 1888-1900.
https://doi.org/10.7150/ijbs.40917
[7] Fang, S., He, T., Yu, M., et al. (2024) Glucocorticoids Promote Steroid-Induced Osteonecrosis of the Femoral Head by Down-Regulating Serum Alpha-2-Macroglobulin to Induce Oxidative Stress and Facilitate SIRT2-Mediated BMP2 Deacetylation. Free Radical Biology and Medicine, 213, 208-221.
https://doi.org/10.1016/j.freeradbiomed.2023.12.026
[8] Jiang, H., Lin, C., Cai, T., et al. (2024) Taxifolin-Mediated Nrf2 Activation Ameliorates Oxidative Stress and Apoptosis for the Treatment of Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Phytotherapy Research, 38, 156-173.
https://doi.org/10.1002/ptr.8031
[9] Huang, S.L., Jiao, J. and Yan, H.W. (2016) Hydrogen-Rich Saline Attenuates Steroid-Associated Femoral Head Necrosis through Inhibition of Oxidative Stress in a Rabbit Model. Experimental and Therapeutic Medicine, 11, 177-182.
https://doi.org/10.3892/etm.2015.2883
[10] Chen, L., Wang, B., Xie, J., et al. (2021) Therapeutic Effect of SIRT3 on Glucocorticoid-Induced Osteonecrosis of the Femoral Head via Intracellular Oxidative Suppression. Free Radical Biology and Medicine, 176, 228-240.
https://doi.org/10.1016/j.freeradbiomed.2021.07.016
[11] Yang, N., Sun, H., Xue, L., et al. (2021) Inhibition of MAGL Activates the Keap1/Nrf2 Pathway to Attenuate Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Clinical and Translational Medicine, 11, E447.
https://doi.org/10.1002/ctm2.447
[12] Masaki, H. (2010) Role of Antioxidants in the Skin: Anti-Aging Effects. Journal of Dermatological Science, 58, 85-90.
https://doi.org/10.1016/j.jdermsci.2010.03.003
[13] Zhang, J., Wang, H., Vikash, V., et al. (2016) ROS and ROS-Mediated Cellular Signaling. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 4350965.
https://doi.org/10.1155/2016/4350965
[14] Rhee, S.G. (2006) Cell Signaling. H2O2, a Necessary Evil for Cell Signaling. Science, 312, 1882-1883.
https://doi.org/10.1126/science.1130481
[15] Cantley, L.C. (2002) The Phosphoinositide 3-Kinase Pathway. Science, 296, 1655-1657.
https://doi.org/10.1126/science.296.5573.1655
[16] Schieber, M. and Chandel, N.S. (2014) ROS Function in Redox Signaling and Oxidative Stress. Current Biology, 24, R453-R462.
https://doi.org/10.1016/j.cub.2014.03.034
[17] Kamiński, M.M., Röth, D., Krammer, P.H., et al. (2013) Mitochondria as Oxidative Signaling Organelles in T-Cell Activation: Physiological Role and Pathological Implications. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 61, 367-384.
https://doi.org/10.1007/s00005-013-0235-0
[18] Luo, J.F., Shen, X., Chou, K.L., et al. (2018) Activation of Nrf2/HO-1 Pathway by Nardochinoid C Inhibits Inflammation and Oxidative Stress in Lipopolysaccharide-Stimulated Macrophages. Frontiers in Pharmacology, 9, Article No. 911.
https://doi.org/10.3389/fphar.2018.00911
[19] Morgan, M.J. and Liu, Z.G. (2011) Crosstalk of Reactive Oxygen Species and NF-κB Signaling. Cell Research, 21, 103-115.
https://doi.org/10.1038/cr.2010.178
[20] Rochette, L., Dogen, G., Rigal, E., et al. (2022) Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. International Journal of Molecular Sciences, 24, Article No. 449.
https://doi.org/10.3390/ijms24010449
[21] Davies, M.J. (2016) Protein Oxidation and Peroxidation. Biochemical Journal, 473, 805-825.
https://doi.org/10.1042/BJ20151227
[22] Marnett, L.J. (2000) Oxyradicals and DNA Damage. Carcinogenesis, 21, 361-370.
https://doi.org/10.1093/carcin/21.3.361
[23] Di Florio, D.N., Sin, J., Coronado, M.J., et al. (2020) Sex Differences in Inflammation, Redox Biology, Mitochondria and Autoimmunity. Redox Biology, 31, Article ID: 101482.
https://doi.org/10.1016/j.redox.2020.101482
[24] Singh, M., Singh, L., Sharma, K., et al. (2023) A Molecular Troika of Angiogenesis, Coagulopathy and Endothelial Dysfunction in the Pathology of Avascular Necrosis of Femoral Head: A Comprehensive Review. Cells, 12, Article No. 2278.
https://doi.org/10.3390/cells12182278
[25] Gagala, J., Buraczynska, M., Mazurkiewicz, T., et al. (2013) Prevalence of Genetic Risk Factors Related with Thrombophilia and Hypofibrinolysis in Patients with Osteonecrosis of the Femoral Head in Poland. BMC Musculoskeletal Disorders, 14, Article No. 264.
https://doi.org/10.1186/1471-2474-14-264
[26] Mont, M.A., Salem, S., Piuzzi, N., et al. (2020) Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today? A 5-Year Update. The Journal of Bone and Joint Surgery. American Volume, 102, 1084-1099.
https://doi.org/10.2106/JBJS.19.01271
[27] Zheng, D., Liu, J., Piao, H., et al. (2022) ROS-Triggered Endothelial Cell Death Mechanisms: Focus on Pyroptosis, Parthanatos, and Ferroptosis. Frontiers in Immunology, 13, Article ID: 1039241.
https://doi.org/10.3389/fimmu.2022.1039241
[28] Chen, W., Zhao, M., Zhao, H., et al. (2017) Activation of the TXNIP/NLRP3 Inflammasome Pathway Contributes to Inflammation in Diabetic Retinopathy: A Novel Inhibitory Effect of Minocycline. Inflammation Research, 66, 157-166.
https://doi.org/10.1007/s00011-016-1002-6
[29] Batty, M., Bennett, M.R. and Yu, E. (2022) The Role of Oxidative Stress in Atherosclerosis. Cells, 11, Article No. 3843.
https://doi.org/10.3390/cells11233843
[30] Pacinella, G., Ciaccio, A.M. and Tuttolomondo, A. (2022) Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. International Journal of Molecular Sciences, 23, Article No. 15722.
https://doi.org/10.3390/ijms232415722
[31] Sun, Y., Rawish, E., Nording, H.M., et al. (2021) Inflammation in Metabolic and Cardiovascular Disorders-Role of Oxidative Stress. Life (Basel), 11, Article No. 672.
https://doi.org/10.3390/life11070672
[32] Poredos, P., Poredos, A.V. and Gregoric, I. (2021) Endothelial Dysfunction and Its Clinical Implications. Angiology, 72, 604-615.
https://doi.org/10.1177/0003319720987752
[33] Zhang, Q., Liu, J., Duan, H., et al. (2021) Activation of Nrf2/HO-1 Signaling: An Important Molecular Mechanism of Herbal Medicine in the Treatment of Atherosclerosis via the Protection of Vascular Endothelial Cells from Oxidative Stress. Journal of Advanced Research, 34, 43-63.
https://doi.org/10.1016/j.jare.2021.06.023
[34] Zhang, P., Tao, F., Liu, Q., et al. (2019) 5-Azacytidine and Trichostatin A Enhance the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells Isolated from Steroid-Induced Avascular Necrosis of the Femoral Head in Rabbit. Journal of Biosciences, 44, Article No. 87.
https://doi.org/10.1007/s12038-019-9901-7
[35] Han, L., Wang, B., Wang, R., et al. (2019) The Shift in the Balance Between Osteoblastogenesis and Adipogenesis of Mesenchymal Stem Cells Mediated by Glucocorticoid Receptor. Stem Cell Research & Therapy, 10, Article No. 377.
https://doi.org/10.1186/s13287-019-1498-0
[36] Zhang, F., Peng, W., Zhang, J., et al. (2020) P53 and Parkin Co-Regulate Mitophagy in Bone Marrow Mesenchymal Stem Cells to Promote the Repair of Early Steroid-Induced Osteonecrosis of the Femoral Head. Cell Death & Disease, 11, Article No. 42.
https://doi.org/10.1038/s41419-020-2238-1
[37] Atashi, F., Modarressi, A. and Pepper, M.S. (2015) The Role of Reactive Oxygen Species in Mesenchymal Stem Cell Adipogenic and Osteogenic Differentiation: A Review. Stem Cells and Development, 24, 1150-1163.
https://doi.org/10.1089/scd.2014.0484
[38] Kim, W.K., Meliton, V., Bourquard, N., et al. (2010) Hedgehog Signaling and Osteogenic Differentiation in Multipotent Bone Marrow Stromal Cells Are Inhibited by Oxidative Stress. Journal of Cellular Biochemistry, 111, 1199-209.
https://doi.org/10.1002/jcb.22846
[39] Kanda, Y., Hinata, T., Kang, S., et al. (2011) Reactive Oxygen Species Mediate Adipocyte Differentiation in Mesenchymal Stem Cells. Life Sciences, 89, 250-258.
https://doi.org/10.1016/j.lfs.2011.06.007
[40] Iantomasi, T., Romagnoli, C., Palmini, G., et al. (2023) Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with MicroRNAs. International Journal of Molecular Sciences, 24, Article No. 3772.
https://doi.org/10.3390/ijms24043772
[41] Qiu, X., Wang, C., Qiu, J., et al. (2019) Melatonin Rescued Reactive Oxygen Species-Impaired Osteogenesis of Human Bone Marrow Mesenchymal Stem Cells in the Presence of Tumor Necrosis Factor-Alpha. Stem Cells International, 2019, Article ID: 6403967.
https://doi.org/10.1155/2019/6403967
[42] Li, Y., He, Y., Chen, J., et al. (2021) Selenomethionine Protects Oxidative-Stress-Damaged Bone-Marrow-Derived Mesenchymal Stem Cells via an Antioxidant Effect and the PTEN/PI3K/AKT Pathway. Experimental Cell Research, 408, Article ID: 112864.
https://doi.org/10.1016/j.yexcr.2021.112864
[43] Geng, W., Shi, H., Zhang, X., et al. (2019) Substance P Enhances BMSC Osteogenic Differentiation via Autophagic Activation. Molecular Medicine Reports, 20, 664-670.
https://doi.org/10.3892/mmr.2019.10257
[44] Zhang, F., Yan, Y., Peng, W., et al. (2021) PARK7 Promotes Repair in Early Steroid-Induced Osteonecrosis of the Femoral Head by Enhancing Resistance to Stress-Induced Apoptosis in Bone Marrow Mesenchymal Stem Cells via Regulation of the Nrf2 Signaling Pathway. Cell Death & Disease, 12, Article No. 940.
https://doi.org/10.1038/s41419-021-04226-1
[45] Li, X., Zhang, J., Hou, Y., et al. (2019) Coenzyme Q10 Regulation of Apoptosis and Oxidative Stress in H(2)O(2) Induced BMSC Death by Modulating the Nrf-2/NQO-1 Signaling Pathway and Its Application in a Model of Spinal Cord Injury. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 6493081.
https://doi.org/10.1155/2019/6493081
[46] Weng, J., Wang, L., Wang, K., et al. (2023) Tauroursodeoxycholic Acid Inhibited Apoptosis and Oxidative Stress in H(2)O(2)-Induced BMSC Death via Modulating the Nrf-2 Signaling Pathway: The Therapeutic Implications in a Rat Model of Spinal Cord Injury. Molecular Neurobiology.
https://doi.org/10.1007/s12035-023-03754-5
[47] Fang, J., Zhao, X., Li, S., et al. (2019) Protective Mechanism of Artemisinin on Rat Bone Marrow-Derived Mesenchymal Stem Cells against Apoptosis Induced by Hydrogen Peroxide via Activation of C-Raf-Erk1/2-P90(Rsk)-CREB Pathway. Stem Cell Research & Therapy, 10, Article No. 312.
https://doi.org/10.1186/s13287-019-1419-2
[48] Dirckx, N., Moorer, M., Clemens, T., et al. (2019) The Role of Osteoblasts in Energy Homeostasis. Nat Rev Endocrinol, 15(11, 651-665.
https://doi.org/10.1038/s41574-019-0246-y
[49] Robling, A.G. and Bonewald, L.F. (2020) The Osteocyte: New Insights. Annual Review of Physiology, 82, 485-506.
https://doi.org/10.1146/annurev-physiol-021119-034332
[50] Deng, S., Dai, G., Chen, S., et al. (2019) Dexamethasone Induces Osteoblast Apoptosis through ROS-PI3K/AKT/GSK3β Signaling Pathway. Biomedicine & Pharmacotherapy, 110, 602-608.
https://doi.org/10.1016/j.biopha.2018.11.103
[51] Almeida, M., Ham, L., Ambrogini, E., et al. (2011) Glucocorticoids and Tumor Necrosis Factor α Increase Oxidative Stress and Suppress Wnt Protein Signaling in Osteoblasts. Journal of Biological Chemistry, 286, 44326-44335.
https://doi.org/10.1074/jbc.M111.283481
[52] Ambrogini, E., Almeida, M., Martin-Millan, M., et al. (2010) FoxO-Mediated Defense against Oxidative Stress in Osteoblasts Is Indispensable for Skeletal Homeostasis in Mice. Cell Metabolism, 11, 136-146.
https://doi.org/10.1016/j.cmet.2009.12.009
[53] Bai, S.C., Xu, Q., Li, H., et al. (2019) NADPH Oxidase Isoforms Are Involved in Glucocorticoid-Induced Preosteoblast Apoptosis. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 9192413.
https://doi.org/10.1155/2019/9192413
[54] Bai, X.C., Lu, D., Bai, J., et al. (2004) Oxidative Stress Inhibits Osteoblastic Differentiation of Bone Cells by ERK and NF-KappaB. Biochemical and Biophysical Research Communications, 314, 197-207.
https://doi.org/10.1016/j.bbrc.2003.12.073
[55] Park, B.G., Yoo, C., Kim, H., et al. (2005) Role of Mitogen-Activated Protein Kinases in Hydrogen Peroxide-Induced Cell Death in Osteoblastic Cells. Toxicology, 215, 115-125.
https://doi.org/10.1016/j.tox.2005.07.003
[56] Weinstein, R.S., Wan, C., Liu, Q., et al. (2010) Endogenous Glucocorticoids Decrease Skeletal Angiogenesis, Vascularity, Hydration, and Strength in Aged Mice. Aging Cell, 9, 147-161.
https://doi.org/10.1111/j.1474-9726.2009.00545.x
[57] Wang, Y., Wan, C., Deng, L., et al. (2007) The Hypoxia-Inducible Factor Alpha Pathway Couples Angiogenesis to Osteogenesis during Skeletal Development. Journal of Clinical Investigation, 117, 1616-1626.
https://doi.org/10.1172/JCI31581
[58] Feng, X. and Teitelbaum, S.L. (2013) Osteoclasts: New Insights. Bone Research, 1, 11-26.
https://doi.org/10.4248/BR201301003
[59] Ashtar, M., Tenshin, H., Teramachi, J., et al. (2020) The Roles of ROS Generation in RANKL-Induced Osteoclastogenesis: Suppressive Effects of Febuxostat. Cancers (Basel), 12, Article No. 929.
https://doi.org/10.3390/cancers12040929
[60] Liu, M., Liu, S., Zhang, Q., et al. (2021) Curculigoside Attenuates Oxidative Stress and Osteoclastogenesis via Modulating Nrf2/NF-κB Signaling Pathway in RAW264.7 Cells. Journal of Ethnopharmacology, 275, Article ID: 114129.
https://doi.org/10.1016/j.jep.2021.114129
[61] Wang, J., Zhang, Y., Cao, J., et al. (2023) The Role of Autophagy in Bone Metabolism and Clinical Significance. Autophagy, 19, 2409-2427.
https://doi.org/10.1080/15548627.2023.2186112
[62] Agidigbi, T.S. and Kim, C. (2019) Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases. International Journal of Molecular Sciences, 20, Article No. 3576.
https://doi.org/10.3390/ijms20143576
[63] Xu, Q., Cao, Z., Xu, J., et al. (2022) Effects and Mechanisms of Natural Plant Active Compounds for the Treatment of Osteoclast-Mediated Bone Destructive Diseases. Journal of Drug Targeting, 30, 394-412.
https://doi.org/10.1080/1061186X.2021.2013488
[64] Jia, Y.B., Jiang, D.Y., Ren, Y.Z., et al. (2017) Inhibitory Effects of Vitamin E on Osteocyte Apoptosis and DNA Oxidative Damage in Bone Marrow Hemopoietic Cells at Early Stage of Steroid-Induced Femoral Head Necrosis. Molecular Medicine Reports, 15, 1585-1592.
https://doi.org/10.3892/mmr.2017.6160
[65] Fontani, F., Marcucci, M., Iantomasi, T., et al. (2015) Glutathione, N-Acetylcysteine and Lipoic Acid Down-Regulate Starvation-Induced Apoptosis, RANKL/OPG Ratio and Sclerostin in Osteocytes: Involvement of JNK and ERK1/2 Signalling. Calcified Tissue International, 96, 335-346.
https://doi.org/10.1007/s00223-015-9961-0
[66] Mulcahy, L.E., Taylor, D., Lee, T., et al. (2011) RANKL and OPG Activity Is Regulated by Injury Size in Networks of Osteocyte-Like Cells. Bone, 48, 182-188.
https://doi.org/10.1016/j.bone.2010.09.014