靶向衰老细胞在骨关节炎治疗中的研究进展
Research Progress in Targeting Senescent Cells in the Treatment of Osteoarthritis
DOI: 10.12677/acm.2024.1441054, PDF, HTML, XML, 下载: 23  浏览: 63 
作者: 王 鹏, 李 伟*:山东大学,山东 济南;满振涛:山东第一医科大学附属省立医院骨关节科,山东 济南
关键词: 骨关节炎细胞衰老衰老相关分泌表型软骨细胞综述Osteoarthritis Cellular Senescence Senescent Associated Secretory Phenotype Chondrocyte Review
摘要: 细胞衰老是指一种永久性的细胞周期终止状态,能够影响机体的发育及动态平衡。它和许多与衰老相关的疾病有关,比如骨关节炎。目前关于衰老细胞与骨关节炎之间的研究主要集中在寻找能够清除衰老细胞或选择性阻断衰老相关分泌表型(SASP)以阻止疾病进展的药物疗法。随着对细胞衰老和SASP新机制以及其靶点的探索,潜在的治疗方法将不断增加。本文将探讨细胞衰老的相关机制,并讨论针对每个靶点的治疗方案及其优势。
Abstract: Cellular senescence is a state of permanent cell cycle termination that can affect the development and dynamic homeostasis of the organism. It is associated with many diseases related to aging, such as osteoarthritis. Current research on the link between senescent cells and osteoarthritis is focused on finding drug therapies that can remove senescent cells or selectively block senescence- associated secretory phenotypes (SASPs) to halt disease progression. As new mechanisms of cellular senescence and SASP, as well as their targets, are explored, the potential therapeutic approaches will continue to grow. This article will explore the mechanisms involved in cellular senescence and discuss therapeutic options for each target and their advantages.
文章引用:王鹏, 满振涛, 李伟. 靶向衰老细胞在骨关节炎治疗中的研究进展[J]. 临床医学进展, 2024, 14(4): 519-525. https://doi.org/10.12677/acm.2024.1441054

1. 引言

骨关节炎(Osteoarthritis, OA)是一种严重影响患者生活质量的慢性退行性疾病,给患者、家庭和社会造成了沉重的负担 [1] 。目前治疗OA的方法主要包括非甾体抗炎药、关节内注射透明质酸、富含血小板的血浆注射,以及其他可获得短期益处的物理疗法 [2] 。然而,这些措施都无法阻止或逆转OA患者的病情进展。近年来,对OA发病机制的深入研究,为其治疗策略提供了新的可能性。通过调节分解代谢信号、调节蛋白酶活性、抑制炎症或软骨下骨重塑等手段,治疗目标从缓解症状拓展到了修复疾病的范畴 [3] [4] [5] [6] [7] 。

衰老细胞数量的增加及其分泌表型与OA进展和软骨降解有关 [8] ,针对衰老细胞及其在关节组织中产生的相关因子的研究引起了人们的极大兴趣。目前的研究主要包括直接清除衰老细胞、抑制衰老相关分泌表型(Senescent Associated Secretory Phenotype, SASP)和恢复干细胞活力等 [9] [10] [11] 。针对衰老的治疗靶点的开发面临着衰老细胞表型多样性的挑战,因此,仍然需要更多的研究,以此为新的OA治疗方式的开发提供进一步支持。本文将就细胞衰老与OA的潜在因果关系及靶向衰老细胞治疗OA的进展方面进行综述。

2. 细胞衰老与骨关节炎

成年人的软骨内在修复能力有限,损伤之后极易发生OA等不可逆病变。尽管软骨细胞在动态平衡期间增殖水平较低,但却依然保持了一定增殖潜力。例如,在承受外界异常刺激后,软骨细胞可以“去分化”,即在应激下可以代偿性增生却不改变细胞种类,这也被认为是在尝试修复损伤 [11] 。静息(即可逆的细胞周期停滞)和衰老之间的关系是复杂的,有证据表明,对受损的静息细胞进行促分裂刺激,可以在其重新进入细胞周期时被诱导衰老 [12] 。

像其他器官一样,关节组织也容易随着年龄的增长而衰老和衰退,衰老细胞的数量与年龄密切相关 [13] [14] [15] 。随着细胞状态的改变,细胞中的代谢模式随之发生重构,这一变化可能会推动OA的病理进程。有研究表明,将衰老的成纤维细胞移植到小鼠的膝关节中会导致软骨侵蚀,这表明衰老的细胞改变了关节内的微环境,导致了OA [15] 。

关节组织炎症是OA的重要标志 [16] [17] ,衰老的细胞通过SASP参与炎症状态。在SASP中具有生物活性的分子被分泌到周围组织微环境中 [18] [19] ,导致OA患者的关节液中白细胞介素-6 (Interferin-6, IL-6)等细胞因子水平升高 [20] ,IL-6-STAT3信号通路又可诱导正常人成纤维细胞提前衰老 [21] 。另外,细胞因子可以上调基质金属蛋白酶家族(matrix metalloproteinases, MMPs)的表达。MMPs可以降解软骨中的细胞外基质蛋白。软骨细胞外基质的丢失是OA的一个关键早期特征 [22] ,还有研究表明,衰老细胞可以通过细胞外囊泡或一些细胞因子转移激活衰老途径的MicroRNA至周围健康细胞,导致周围细胞进一步衰老和出现SASP [23] [24] 。这进一步表明细胞衰老是OA发病的驱动因素。

3. 衰老细胞清除剂

近年的研究表明,清除衰老细胞是治疗年龄相关性疾病的潜在策略。在OA相关的研究中,这种疗法改善了骨小梁和皮质骨的微结构 [25] [26] 。有研究表明,选择性清除小鼠的衰老细胞可以减轻OA的严重程度,改善疼痛症状,降低MMP-13和其他SASP因子的表达,并刺激软骨再生 [8] 。另外,有研究者发现杀死OA浅表区域的软骨细胞对软骨损伤有一定保护作用 [27] 。他们的研究没有特别针对衰老细胞,这也表明衰老细胞及其相关的SASP可能比通过药物去除这些细胞对关节组织破坏性更大。

最先研究清除衰老细胞作用的两个小分子药物是达沙替尼(dasatinib)和槲皮素(quercetin),在行前交叉韧带离断(Anterior Cruciate Ligament Transection, ACLT)手术的大鼠模型中,这两种药物降低了SASP并促进了软骨形成 [28] 。对颞颌关节的研究提供了进一步的证据,表明达沙替尼和槲皮素可以通过消除衰老细胞来减轻关节退变 [29] 。除了槲皮素,其他天然的药物还有胡椒碱和非瑟酮,胡椒碱已被证明可以降低血清中IL-1β、MMP-1和MMP-3的水平,而在通过手术破坏内侧半月板(destabilization of medial meniscus, DMM)稳定而导致骨性关节炎的小鼠中,非瑟酮减轻了软骨损伤并改善了滑膜炎症 [30] 。UBX0101 是双微体同源基因2 (mousedouble minute 2, MDM2)和p53肿瘤蛋白(tumor protein 53, p53)之间相互作用的抑制剂 [8] 。对小鼠ACLT后关节内注射的研究发现,连续注射UBX0101增加了关节内衰老细胞的清除,并降低了幼年动物的OA严重程度 [31] 。BCL (B cell lymphoma)蛋白是另一个潜在的抗衰老药物治疗靶点,相关抑制剂Navitoclax (ABT-263)已被证明在DMM模型中可诱导衰老细胞凋亡和保护关节软骨损伤 [32] 。

4. SASP相关分子拮抗剂

SASP相关分子拮抗剂(Senomorphic)通过靶向SASP参与的途径来调节和减少衰老细胞的炎性分泌。SASP因子包括数百种蛋白质和小分子,包括促炎细胞因子和降解基质的基质金属蛋白酶。虽然SASP在组织重塑和修复方面可能是有益的,但它的旁分泌和自分泌效应在骨关节炎的诱导和发展中发挥着重要作用 [25] [33] [34] [35] 。进一步确定SASP的特性及调节它的下游途径是目前开发对抗衰老细胞负面影响的有效方法。

目前正在研究的SASP调控途径包括酪氨酸激酶-转录因子(JAK-STAT)、哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)、丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK),Wnt (Wingless-Type MMTV Integration Site Family)等 [36] [37] [38] [39] ,抑制或改变这些通路的药物在临床前研究中显示出作为OA治疗的潜力。如鲁索利替尼(Ruxolitinib)是一种JAK1/2抑制剂,通过下调老年小鼠骨髓基质细胞中IL-6、肿瘤坏死因子-α (tumor necrosis factor, TNF-α)、MMP-1、MMP-3和MMP13的表达来抑制SASP因子 [25] 。雷帕霉素是mTOR复合体(Rapamycin complex 1, mTORC1)的抑制剂,mTORC1通过差异调节MAPK活化蛋白激酶2 (Mitogen-activated protein kinase-activated protein kinase 2, MAPKAPK2)和IL-1的翻译来调节SASP [36] 。二甲双胍是糖尿病患者常用的一种辅助血糖控制的药物,它同时也被认为是一种Senomorphic疗法。在小鼠DMM模型中,二甲双胍具有软骨保护作用,早期数据表明这一效果是由AMPK途径介导的 [39] 。IL-17和Wnt信号为发展抗骨关节炎药物(Disease-Modifying OA Drugs, DMOADs)提供了进一步的靶点,因为它们可以促进MMP-13以及其他OA介质的产生,从而促进OA的进展 [40] [41] 。进一步的实验发现,在小鼠ACLT后给予IL-17中和抗体可降低MMP-13和p21,这种治疗方式保护了组织结构并改善了关节的功能 [31] 。

5. 细胞因子抑制剂

炎症细胞因子,特别是IL-1α/β、IL-6、IL-8和TNF-α等,伴随SASP的增加而增加,并与OA的发生机制有关 [42] 。虽然在小鼠体内进行的IL-1阻断和IL-1敲除实验未能证明其可以在胶原酶诱导的OA中减轻软骨破坏或滑膜炎症 [43] 。但这些药物仍然是值得研究的OA治疗候选药物,因为它们在治疗几种遗传性自体炎症(斯蒂尔病和白塞病)的过程中,证明了它们的安全性和有效性 [44] 。目前FDA批准的许多用于治疗类风湿性关节炎(Rheumatoid arthritis, RA)等炎症性疾病的细胞因子抑制剂,对OA的治疗效果也已进入临床试验 [45] 。拖珠单抗(Tocilizumab, TCZ)是一种IL-6抑制剂,目前被批准用于治疗RA。在一项有关手部OA的3期临床试验中,相较于安慰剂,TCZ在缓解手部OA患者的疼痛方面并未展示出更好的治疗效果,不良事件发生率反而有所上升 [46] 。

6. 基因疗法

治疗OA的另一种策略是直接针对衰老及耗竭的干细胞。最近的研究已经确定了一些影响干细胞寿命的因素。DiGeorge关键区(DiGeorge critical region, DGCR) 8、Yes相关蛋白(yes-associated protein, YAP)和色盒(Chromobox, CBX) 4是维持干细胞核仁止血的三个关键因子。缺乏这些因子的间充质干细胞(Mesenchymal Stem Cells, MSCs)会出现过早衰老,通过关节内腺相关病毒(Adeno-associated virus, AAV)基因治疗方法增强这些基因的表达时,研究者观察到小鼠OA的发生与发展的推迟 [47] [48] [49] 。另外,有研究者使用相同的基因治疗方法探索了转化生长因子βR2 (soluble form of mouse transforming growth factor-β receptor 2, sTGFβR2)和αKlotho在OA中的协同效应。在OA大鼠模型中,研究者观察到软骨细胞特异性标志物和细胞增殖能力的增加 [50] 。这些结果表明,通过基因治疗使干细胞恢复活力是治疗OA的一种可行且有前景的治疗策略。

7. 总结与展望

OA是一种具有重大全球影响的衰老疾病。细胞衰老和伴随的SASP已经成为影响OA进展的潜在关键因素 [51] 。体内和体外研究已经阐明了一系列分子靶点对消除衰老细胞或减少SASP的影响。这些靶点已经产生了许多正在进行临床试验的疗法。未来DMOADs有可能以衰老细胞或衰老细胞的产物为目标。为了阐明这些干预措施的长期效果,还有大量针对易患人群的研究要做。同时,还需要考虑杀死或改变器官中衰老细胞的负面影响。近期研究表明,衰老细胞可以通过招募巨噬细胞促进早期伤口愈合和组织再生。因此,清除衰老细胞及其相关产物的研究必须考虑到不同的治疗时间对疾病结果的影响,从而开辟出一条通过靶向衰老细胞来治疗OA的研究路线。

NOTES

*通讯作者。

参考文献

[1] 张荣, 张向东, 赵明宇. 膝骨关节炎发病机制及治疗进展[J]. 风湿病与关节炎, 2019, 8(5): 68-72.
[2] Matsuzaki, T., Alvarez-Garcia, O., Mokuda, S., et al. (2018) FoxO Transcription Factors Modulate Autophagy and Proteoglycan 4 in Cartilage Homeostasis and Osteoarthritis. Science Translational Medicine, 10, Eaan0746.
https://doi.org/10.1126/scitranslmed.aan0746
[3] Wu, X., Lai, Y., Chen, S., et al. (2022) Kindlin-2 Preserves Integrity of the Articular Cartilage to Protect against Osteoarthritis. Nature Aging, 2, 332-347.
https://doi.org/10.1038/s43587-021-00165-w
[4] Chen, H., Qin, Z., Zhao, J., et al. (2019) Cartilage-Targeting and Dual MMP-13/PH Responsive Theranostic Nanoprobes for Osteoarthritis Imaging and Precision Therapy. Biomaterials, 225, Article ID: 119520.
https://doi.org/10.1016/j.biomaterials.2019.119520
[5] Ye, W., Yang, Z., Cao, F., et al. (2022) Articular Cartilage Reconstruction with TGF-β1-Simulating Self-Assembling Peptide Hydrogel-Based Composite Scaffold. Acta Biomaterialia, 146, 94-106.
https://doi.org/10.1016/j.actbio.2022.05.012
[6] Baker, D.J., Wijshake, T., Tchkonia, T., et al. (2011) Clearance of p16Ink4a-Positive Senescent Cells Delays Ageing-Associated Disorders. Nature, 479, 232-236.
https://doi.org/10.1038/nature10600
[7] Zhu, J., Yang, S., Qi, Y., et al. (2022) Stem Cell-Homing Hydrogel-Based MiR-29b-5p Delivery Promotes Cartilage Regeneration by Suppressing Senescence in an Osteoarthritis Rat Model. Science Advances, 8, Eabk0011.
https://doi.org/10.1126/sciadv.abk0011
[8] Jeon, O.H., Kim, C., Laberge, R.M., et al. (2017) Local Clearance of Senescent Cells Attenuates the Development of Post-Traumatic Osteoarthritis and Creates a Pro-Regenerative Environment. Nature Medicine, 23, 775-781.
https://doi.org/10.1038/nm.4324
[9] Martel, J., Ojcius, D.M., Wu, C.Y., et al. (2020) Emerging Use of Senolytics and Senomorphics against Aging and Chronic Diseases. Medicinal Research Reviews, 40, 2114-2131.
https://doi.org/10.1002/med.21702
[10] Ocampo, A., Reddy, P., Martinez-Redondo, P., et al. (2016) In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell, 167, 1719-1733.E12.
https://doi.org/10.1016/j.cell.2016.11.052
[11] Chen, Y., Yu, Y., Wen, Y., et al. (2022) A High-Resolution Route Map Reveals Distinct Stages of Chondrocyte Dedifferentiation for Cartilage Regeneration. Bone Research, 10, Article No. 38.
https://doi.org/10.1038/s41413-022-00209-w
[12] Ogrodnik, M., Salmonowicz, H., Jurk, D., et al. (2019) Expansion and Cell-Cycle Arrest: Common Denominators of Cellular Senescence. Trends in Biochemical Sciences, 44, 996-1008.
https://doi.org/10.1016/j.tibs.2019.06.011
[13] Diekman, B.O., Sessions, G.A., Collins, J.A., et al. (2018) Expression of p16INK4a Is a Biomarker of Chondrocyte Aging but Does Not Cause Osteoarthritis. Aging Cell, 17, e12771.
https://doi.org/10.1111/acel.12771
[14] Del Rey, M.J., Valín, Á., Usategui, A., et al. (2019) Senescent Synovial Fibroblasts Accumulate Prematurely in Rheumatoid Arthritis Tissues and Display an Enhanced Inflammatory Phenotype. Immunity & Ageing, 16, 1-9.
https://doi.org/10.1186/s12979-019-0169-4
[15] Xu, M., Bradley, E.W., Weivoda, M.M., et al. (2017) Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 72, 780-785.
[16] Bijlsma, J.W.J., Berenbaum, F. and Lafeber, F.P.J.G. (2011) Osteoarthritis: An Update with Relevance for Clinical Practice. The Lancet, 377, 2115-2126.
https://doi.org/10.1016/S0140-6736(11)60243-2
[17] Farr, J.N., Fraser, D.G., Wang, H., et al. (2016) Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 31, 1920-1929.
https://doi.org/10.1002/jbmr.2892
[18] Coppé, J.P., Desprez, P.Y., Krtolica, A., et al. (2010) The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology: Mechanisms of Disease, 5, 99-118.
https://doi.org/10.1146/annurev-pathol-121808-102144
[19] Basisty, N., Kale, A., Jeon, O.H., et al. (2020) A Proteomic Atlas of Senescence-Associated Secretomes for Aging Biomarker Development. PLOS Biology, 18, E3000599.
https://doi.org/10.1371/journal.pbio.3000599
[20] Pearson, M.J., Herndler-Brandstetter, D., Tariq, M.A., et al. (2017) IL-6 Secretion in Osteoarthritis Patients Is Mediated by Chondrocyte-Synovial Fibroblast Cross-Talk and Is Enhanced by Obesity. Scientific Reports, 7, Article No. 3451.
https://doi.org/10.1038/s41598-017-03759-w
[21] Kojima, H., Inoue, T., Kunimoto, H., et al. (2013) IL-6-STAT3 Signaling and Premature Senescence. Jak-Stat, 2, E25763.
https://doi.org/10.4161/jkst.25763
[22] Loeser, R.F., Goldring, S.R., Scanzello, C.R., et al. (2012) Osteoarthritis: A Disease of the Joint as an Organ. Arthritis and Rheumatism, 64, Article No. 1697.
https://doi.org/10.1002/art.34453
[23] Jeon, O.H., Wilson, D.R., Clement, C.C., et al. (2019) Senescence Cell-Associated Extracellular Vesicles Serve as Osteoarthritis Disease and Therapeutic Markers. JCI Insight, 4, e125019.
https://doi.org/10.1172/jci.insight.125019
[24] Feng, M., Peng, H., Yao, R., et al. (2020) Inhibition of Cellular Communication Network Factor 1 (CCN1)-Driven Senescence Slows down Cartilage Inflammaging and Osteoarthritis. Bone, 139, Article ID: 115522.
https://doi.org/10.1016/j.bone.2020.115522
[25] Farr, J.N. and Khosla, S. (2019) Cellular Senescence in Bone. Bone, 121, 121-133.
https://doi.org/10.1016/j.bone.2019.01.015
[26] Chan, C.K.F., Gulati, G.S., Sinha, R., et al. (2018) Identification of the Human Skeletal Stem Cell. Cell, 175, 43-56. E21.
https://doi.org/10.1016/j.cell.2018.07.029
[27] Zhang, M., Mani, S.B., He, Y., et al. (2016) Induced Superficial Chondrocyte Death Reduces Catabolic Cartilage Damage in Murine Posttraumatic Osteoarthritis. The Journal of Clinical Investigation, 126, 2893-2902.
https://doi.org/10.1172/JCI83676
[28] Dai, H., Chen, R., Gui, C., et al. (2020) Eliminating Senescent Chondrogenic Progenitor Cells Enhances Chondrogenesis under Intermittent Hydrostatic Pressure for the Treatment of OA. Stem Cell Research & Therapy, 11, Article No. 199.
https://doi.org/10.1186/s13287-020-01708-5
[29] Zhou, Y., Al-Naggar, I.M.A., Chen, P.-J., Gasek, N.S., Wang, K., Mehta, S., et al. (2021) Senolytics Alleviate the Degenerative Disorders of Temporomandibular Joint in Old Age. Aging Cell, 20, E13394.
https://doi.org/10.1111/acel.13394
[30] Zheng, W., Feng, Z., You, S., Zhang, H., Tao, Z., Wang, Q., et al. (2017) Fisetin Inhibits IL-1β-Induced Inflammatory Response in Human Osteoarthritis Chondrocytes through Activating SIRT1 and Attenuates the Progression of Osteoarthritis in Mice. International Immunopharmacology, 45, 135-147.
https://doi.org/10.1016/j.intimp.2017.02.009
[31] Faust, H.J., Zhang, H., Han, J., Wolf, M.T., Jeon, O.H., Sadtler, K., et al. (2020) IL-17 and Immunologically Induced Senescence Regulate Response to Injury in Osteoarthritis. Journal of Clinical Investigation, 130, 5493-5507.
https://doi.org/10.1172/JCI134091
[32] Yang, H., Chen, C., Chen, H., et al. (2020) Navitoclax (ABT263) Reduces Inflammation and Promotes Chondrogenic Phenotype by Clearing Senescent Osteoarthritic Chondrocytes in Osteoarthritis. Aging (Albany NY), 12, Article No. 12750.
https://doi.org/10.18632/aging.103177
[33] Di Micco, R., Krizhanovsky, V., Baker, D. and D’Adda Di Fagagna, F. (2021) Cellular Senescence in Ageing: From Mechanisms to Therapeutic Opportunities. Nature Reviews Molecular Cell Biology, 22, 75-95.
https://doi.org/10.1038/s41580-020-00314-w
[34] Coryell, P.R., Diekman, B.O. and Loeser, R.F. (2021) Mechanisms and Therapeutic Implications of Cellular Senescence in Osteoarthritis. Nature Reviews Rheumatology, 17, 47-57.
https://doi.org/10.1038/s41584-020-00533-7
[35] Deshmukh, V., O’Green, A.L., Bossard, C., et al. (2019) Modulation of the Wnt Pathway through Inhibition of CLK2 and DYRK1A by Lorecivivint as a Novel, Potentially Disease-Modifying Approach for Knee Osteoarthritis Treatment. Osteoarthritis and Cartilage, 27, 1347-1360.
https://doi.org/10.1016/j.joca.2019.05.006
[36] Dhanabalan, K.M., Gupta, V.K. and Agarwal, R. (2020) Rapamycin-PLGA Microparticles Prevent Senescence, Sustain Cartilage Matrix Production under Stress and Exhibit Prolonged Retention in Mouse Joints. Biomaterials Science, 8, 4308-4321.
https://doi.org/10.1039/D0BM00596G
[37] Fragoulis, G.E., McInnes, I.B. and Siebert, S. (2019) JAK-Inhibitors. New Players in the Field of Immune-Mediated Diseases, beyond Rheumatoid Arthritis. Rheumatology, 58, I43-I54.
https://doi.org/10.1093/rheumatology/key276
[38] Wan, M., Gray-Gaillard, E.F. and Elisseeff, J.H. (2021) Cellular Senescence in Musculoskeletal Homeostasis, Diseases, and Regeneration. Bone Research, 9, Article No. 41.
https://doi.org/10.1038/s41413-021-00164-y
[39] Li, J., Zhang, B., Liu, W.X., et al. (2020) Metformin Limits Osteoarthritis Development and Progression through Activation of AMPK Signalling. Annals of the Rheumatic Diseases, 79, 635-645.
https://doi.org/10.1136/annrheumdis-2019-216713
[40] Ruan, G., Xu, J., Wang, K., et al. (2018) Associations between Knee Structural Measures, Circulating Inflammatory Factors and MMP13 in Patients with Knee Osteoarthritis. Osteoarthritis and Cartilage, 26, 1063-1069.
https://doi.org/10.1016/j.joca.2018.05.003
[41] Wang, Y., Fan, X., Xing, L., et al. (2019) Wnt Signaling: A Promising Target for Osteoarthritis Therapy. Cell Communication and Signaling, 17, Article No. 97.
https://doi.org/10.1186/s12964-019-0411-x
[42] Van Den Bosch, M.H.J., Van Lent, P. and Van Der Kraan, P.M. (2020) Identifying Effector Molecules, Cells, and Cytokines of Innate Immunity in OA. Osteoarthritis and Cartilage, 28, 532-543.
https://doi.org/10.1016/j.joca.2020.01.016
[43] Nasi, S., Ea, H.K., So, A. and Busso, N. (2017) Revisiting the Role of Interleukin-1 Pathway in Osteoarthritis: Interleukin-1α and-1β, and NLRP3 Inflammasome Are Not Involved in the Pathological Features of the Murine Menisectomy Model of Osteoarthritis. Frontiers in Pharmacology, 8, Article No. 282.
https://doi.org/10.3389/fphar.2017.00282
[44] Dayer, J.M., Oliviero, F. and Punzi, L. (2017) A Brief History of IL-1 and IL-1 Ra in Rheumatology. Frontiers in Pharmacology, 8, Article No. 293.
https://doi.org/10.3389/fphar.2017.00293
[45] Latourte, A., Cherifi, C., Maillet, J., et al. (2017) Systemic Inhibition of IL-6/Stat3 Signalling Protects against Experimental Osteoarthritis. Annals of the Rheumatic Diseases, 76, 748-755.
https://doi.org/10.1136/annrheumdis-2016-209757
[46] Richette, P., Latourte, A., Sellam, J., et al. (2021) Efficacy of Tocilizumab in Patients with Hand Osteoarthritis: Double Blind, Randomised, Placebo-Controlled, Multicentre Trial. Annals of the Rheumatic Diseases, 80, 349-355.
https://doi.org/10.1136/annrheumdis-2020-218547
[47] Deng, L., Ren, R., Liu, Z., et al. (2019) Stabilizing Heterochromatin by DGCR8 Alleviates Senescence and Osteoarthritis. Nature Communications, 10, Article No. 3329.
https://doi.org/10.1038/s41467-019-10831-8
[48] Fu, L., Hu, Y., Song, M., et al. (2019) Up-Regulation of FOXD1 by YAP Alleviates Senescence and Osteoarthritis. PLOS Biology, 17, E3000201.
https://doi.org/10.1371/journal.pbio.3000201
[49] Ren, X., Hu, B., Song, M., et al. (2019) Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis. Cell Reports, 26, 3643-3656.E7.
https://doi.org/10.1016/j.celrep.2019.02.088
[50] Martinez-Redondo, P., Guillen-Guillen, I., Davidsohn, N., Wang, C., Prieto, J., Kurita, M., Hatanaka, F., Zhong, C., Hernandez-Benitez, R., Hishida, T., Lezaki, T., Sakamoto, A., Nemeth, A.N., Hishida, Y., Esteban, C.R., Shojima, K., Huang, L., Shokhirev, M., Nuñez-Delicado, E., Campistol, J.M., Guillen-Vicente, I., Rodriguez-Iñigo, E., Lopez-Alco-rocho, J.M., Guillen-Vicente, M., Church, G., Reddy, P., Guillen-Garcia, P., Liu, G.H. and Belmonte, J.C.I. (2020) αKLOTHO and STGFβR2 Treatment Counteract the Osteoarthritic Phenotype Developed in a Rat Model. Protein Cell, 11, 219-226.
https://doi.org/10.1007/s13238-019-00685-7
[51] López-Otín, C., Blasco, M.A., Partridge, L., et al. (2023) Hallmarks of Aging: An Expanding Universe. Cell, 186, 243-278.
https://doi.org/10.1016/j.cell.2022.11.001