斑秃免疫学机制研究进展
Advances in the Research of the Immunological Mechanisms of Alopecia Areata
DOI: 10.12677/acm.2024.1441049, PDF, HTML, XML, 下载: 30  浏览: 54  科研立项经费支持
作者: 王 敏:大理大学临床医学院,云南 大理;王敏华*:大理大学第一附属医院皮肤科,云南 大理
关键词: 斑秃自身免疫免疫学发病机制Alopecia Areata Autoimmunity Immunology Pathogenesis
摘要: 斑秃是一种突发的炎症性、非瘢痕性的脱发性疾病,临床表现为斑片状脱发、全部头发脱落、全身毛发的脱落。本病具有自限性,但易复发,当前治疗效果的数据有限。目前斑秃的发病机制尚未完全了解,但越来越多的证据证明斑秃是一种免疫介导的疾病。近年来,随着不断的深入研究及靶向精准治疗的发展,参与斑秃的免疫学机制也随之进展。本文就斑秃免疫学机制及研究进展进行综述。
Abstract: Alopecia areata is a sudden-onset, inflammatory, non-scarring hair loss disease, clinically manifested as patchy hair loss, complete loss of hair on the scalp, and loss of body hair. The disease is self-limiting but prone to recurrence, and data on the current treatment efficacy are limited. The pathogenesis of alopecia areata is not fully understood, but increasing evidence suggests that it is an immune-mediated disease. In recent years, with continuous in-depth research and the development of targeted precision therapy, the understanding of the immunological mechanisms involved in alopecia areata has progressed. This article provides a comprehensive review of the immunological mechanisms and research progress in alopecia areata.
文章引用:王敏, 王敏华. 斑秃免疫学机制研究进展[J]. 临床医学进展, 2024, 14(4): 489-496. https://doi.org/10.12677/acm.2024.1441049

1. 简介

斑秃(Alopecia areata, AA)是一种炎症性、非瘢痕性脱发,影响任何有毛发的区域,约占全国人口的2% [1] ,而终生患病风险约为1.7%~2.1% [2] 。其发病机制尚未完全清楚,但免疫系统被认为在其中扮演着关键角色,大多数学者支持AA是一种由触发因素和遗传易感性介导的自身免疫性疾病,同时也有非自身免疫因素参与 [3] 。随着研究的深入,对斑秃的认识和治疗方法也在不断更新。

2. 斑秃相关免疫学

2.1. 毛囊免疫豁免

斑秃的发生与毛囊免疫豁免的破坏密切相关 [4] [5] 。免疫豁免(Immune privilege, IP)是指某些组织或器官受到宿主免疫系统的保护而不受攻击的现象,如角膜组织、睾丸、胎盘等 [4] [6] 。类似于其他组织器官,HF被认为是皮肤的免疫豁免部位,但该状态仅局限于生长期毛囊的近端上皮 [7] ,在毛发周期中,毛囊上皮有节律的维持一个相对免疫豁免区域,从而保持毛发的正常生长 [8] 。

与经典的免疫豁免部位相似,目前已知的维持HF-IP的机制主要如下:1) 正常生长期毛囊中主要组织相容性复合体(Major histocompatibility complex, MHC)I类表达减少或缺失,近端毛囊抗原呈递细胞少且不表达MHCII类分子,有效隔离自身或外来抗原;2) 毛囊内及局部产生的免疫抑制分子可诱导MHCI类和II类分子表达下调,如转化生长因子β (Transforming growth factor β, TGF-β)、α-黑素细胞雌激素(α-Melanocyte stimulating hormone, α-MSH)、促肾上腺皮质激素、IL-10等);3) β2微球蛋白下调或缺失减少MHCI分子的稳定性;4) 毛球上皮缺乏淋巴管以及细胞外基质的构建限制免疫细胞的招募;5) HFs可能通过Fas-FasL途径阻断淋巴细胞活性;6) 血管活性肠肽及免疫抑制相关肽作为免疫保护分子可帮助毛囊免疫豁免的维持 [4] [6] [9] 。上述机制的触发条件、作用强弱及时间均有待进一步确定。

斑秃的发生可以归纳为两种主要反应模式:一是某些触发因素(如皮肤微创伤、压力、遗传易感性、感染)引起毛囊局部炎性损伤,导致γ-干扰素(Interferon γ, IFN-γ)或P物质的释放;二是毛囊自身抗原的异位表达,引起自身反应性CD8+ T细胞的自身免疫反应,产生IFN-γ;这两种途径产生的IFN-γ和/或P物质会破坏毛囊的免疫豁免,导致一系列炎症反应,最终导致脱发 [7] [10] [11] 。该过程涉及众多免疫细胞及免疫因子参与,其如何诱导斑秃发病将在下文阐述。

2.2. 斑秃相关免疫细胞

2.2.1. CD8+ T细胞(细胞毒性T淋巴细胞)

CD8+ T细胞是斑秃患者皮肤内最先浸润的、主要的真皮浸润细胞 [12] 。早期研究发现,注射CD8+细胞的斑秃小鼠模型发生局部脱发,表明活化的CD8+ T细胞可能是斑秃发病的主要媒介 [13] 。NKG2D是一种激活性受体,广泛表达在NK细胞、δγT细胞和CD8+ T细胞上,能够活化这些细胞并引起靶细胞的溶解。其配体包括MICA/B和ULBP/RAET1L,作为应激诱导的分子,向免疫细胞发出危险信号 [14] 。研究发现,人类斑秃患者毛囊周围存在CD8+ NKG2D+T细胞,伴随ULBP和MICA的上调表达,这些配体在斑秃发病机制中的重要性也被基因组关联研究提出 [15] 。进一步的免疫组化证实,AA患者的真皮鞘和真皮乳头中ULBP3+细胞显著增加,并且大多数NKG2D+细胞为CD8+ T细胞 [15] 。其他研究也发现,在斑秃小鼠和患者的病变部位以及外周血中,CD8+NKG2D+ T细胞数量增加,尤其在慢性期病变中,这暗示其可能促进毛囊攻击和持续性脱发 [16] [17] 。这些发现支持了CD8+ T细胞在斑秃免疫中的关键作用,但对其具体机制仍需更深入的研究。

2.2.2. CD4+ T细胞

滤泡周围CD4+ T细胞浸润也是AA病理特征之一。CD4+ T细胞通常在免疫系统中充当“辅助”角色,通过分泌细胞因子和表达特定受体,参与感染源的免疫应答,其中TH1、TH2、TH17和Treg细胞与斑秃的发病相关。

斑秃与Th1细胞密切相关,它们产生多种细胞因子,如IL-2、IFN-γ、IL-12和肿瘤坏死因子(Tumor necrosis factor, TNF)等,这些细胞因子正反馈作用促进Th1细胞进一步分化,可影响毛囊的生长和发育,导致毛发脱落 [18] 。研究发现,Th1型细胞因子在AA病情发展中起着重要作用,如IFN-γ和IL-2在AA患者中升高,与疾病进展和脱发斑数量相关,推测其在疾病进展中发挥关键作用 [19] 。此外,TNF主要诱导细胞凋亡,参与免疫反应和炎症反应,IL-12可诱导IFN-γ的产生,AA患者血清中TNF、IL-12水平均增加,且与病情严重程度及疾病的持续时间呈正相关 [20] [21] 。IL-18作为诱导剂可促进NK细胞和CD4+ Th1淋巴细胞产生IFN-γ还能调节多品种免疫细胞的活性 [22] 。另外,细胞因子不平衡和促炎Th1细胞因子过量已被认为是斑秃持续存在的原因 [23] 。

早期的报道认为Th2细胞因子在斑秃发病中增加 [24] 。遗传关联研究揭示了IL-13易感位点与AA的关联 [15] 。最近的研究表明,斑秃患者伴随着皮肤和全身Th2/Tc2活化,与疾病的严重程度密切相关 [25] 。荟萃分析显示,患有斑秃尤其是全秃或普秃的患者更容易患有特应性皮炎,提示斑秃与特应性皮炎可能有相似的免疫致病机制 [26] 。一例特应性皮炎合并严重AA的患儿,在使用度普利尤单抗治疗后表现出双重疗效,支持上述假设 [27] 。临床试验证实了靶向TH2轴可能在斑秃治疗中的作用 [28] ,但一些报道提示,治疗过程中抑制TH2型炎症可能导致免疫反应向TH1型偏移,诱发斑秃 [29] 。这些证据支持靶向TH2轴对治疗AA的意义,但应考虑AD的共病性。

TH17细胞是CD4+ T细胞的一个亚群,通过分泌多种细胞因子参与固有免疫和某些炎症的发生,免疫病理损伤,特别是自身免疫性疾病中发挥关键作用 [30] 。它们可促进TH17细胞分化和限制Treg细胞分化加剧免疫应答,还促进毛囊上皮细胞表达炎症介质,刺激毛囊上皮细胞增殖和分化,促进毛发生长。然而,过度的TH17细胞反应可能导致毛囊损伤,加剧斑秃发展。一些研究发现,在斑秃患者中TH17相关因子显著升高,但抑制IL-17A并没有改善所有患者的情况,甚至可能引起脱发恶化 [31] 。此外,IL-12/23抑制剂治疗银屑病患者也有引发AA的报道 [32] 。

Treg细胞是免疫系统的重要调节因子,通过抑制其他细胞的免疫反应和分泌抑制性因子如TGF-β、IL-10等来调节自身免疫性疾病。在AA中,CTLA4、GARP、IL-2/IL-21等基因的变化提示Treg细胞可能发挥作用 [15] ,其中CTLA4的高表达被认为是抑制其活性的主要因素 [33] 。Treg细胞数量和功能的缺陷在自身免疫性疾病中起关键作用,而在AA中Treg细胞含量明显降低 [34] 。Foxp3对Treg细胞的发育和活性至关重要 [35] 。有研究发现,Treg细胞因子TGF-β水平显著升高,并与疾病严重程度相关 [36] 。TGF-β可协同IL-2诱导foxp3阳性调节性T细胞,与IL-6一同诱导致病性IL-17产生Th17细胞 [37] 。一些研究表明,病程短的AA患者外周血中Treg细胞比例较高,而随着病程的延长,其比例下降 [38] 。最近的研究还发现,位于毛囊干细胞生态位的Treg细胞可以促进毛囊再生,显示了以Treg细胞为基础的治疗AA的潜力 [39] 。

2.2.3. NK细胞

NK细胞是天然免疫系统中的关键细胞,具有无MHC限制的强大杀伤和免疫调节功能。在AA中,编码NKG2D的基因与该疾病有关联,提示NK细胞可能参与其发病机制 [15] 。正常情况下,在健康人类毛囊周围很少发现NK细胞,而在AA患者中,CD56+ NKG2D+ NK细胞浸润毛囊周围,并且MICA表达增加,巨噬细胞迁移抑制因子(Macrophage migration inhibitory factor, MIF)表达下调 [40] 。MIF主要通过阻止NK细胞释放穿孔素颗粒来抑制NK介导的细胞溶解,在免疫豁免中起重要作用。然而,当免疫豁免崩溃时,这种情况不再被阻止。此外,NK细胞可溶解T细胞并分泌免疫抑制因子,可能有助于控制免疫反应 [41] ,但其在AA发展中具体作用尚不清楚,需进一步研究。

2.2.4. 树突状细胞

树突状细胞(Dendritic cell, DC)是功能最强的抗原提呈细胞之一,在免疫应答中发挥关键作用。这包括髓样树突状细胞和浆细胞样树突状细胞(Plasmacytoid dendritic cell, PDC)。研究表明PDC在所有AA患者球周浸润,表明参与AA发病 [42] 。小鼠模型研究显示,PDC不仅在毛囊球周浸润,而且在病灶附近分布,特别是在非脱发的皮肤中,表现出高度的AA发展潜力 [43] 。该研究还显示,PDC通过产生IFN-α启动AA,诱导细胞凋亡和增加Th1/Tc1趋化因子的产生,导致对毛囊的自身免疫反应。PDC在正常皮肤中不存在,但在损伤或病理时可浸润,它们被激活后,产生IFN-α/β,通过调控髓系DCs、T、B等细胞的功能对毛囊产生反应 [44] 。此外,在病毒感染的情况下,PDC分泌大量IFN-α,通过TLR7/9通路调节免疫反应,有效控制病毒感染和预防自身免疫反应的发生 [44] 。尽管PDC在毛囊中招募的机制尚不明确,但它们可能是先天性和适应性免疫反应之间的桥梁,最终导致斑秃脱发的发生。

2.3. 关键细胞分子

IFN-γ被认为是AA发病机制中的关键细胞因子之一。多项研究表明,AA患者血清中IFN-γ水平升高 [45] [46] ,与疾病活动性及严重程度显著相关 [47] [48] ,并在病变组织中表达增加。高水平的IFN-γ可导致自身免疫反应性CD4+和CD8+ T细胞/NKG2D+细胞的大量积累,并促进毛囊营养不良和毛囊内皮细胞崩溃,加速疾病进展 [9] [49] 。IFN-γ和γ链细胞因子通过多种途径作用于斑秃,包括促进NKG2D+CD8+ T细胞的激活与存活,诱导趋化因子CXCL9/10/11及其受体CXCR3的上调,介导JAK/STAT通路,增强CD8+ T细胞分泌IFN-γ的放大效应 [12] [50] 。除了CD8+ T细胞外,IFN-γ的其他来源还包括1型先天淋巴样细胞、NK细胞、γδT细胞等 [51] ,这些发现进一步挑战了斑秃一直被认为是CD8+ T细胞驱动的自身免疫性疾病的传统观点。

IL-15近年来被发现是AA的生物标志物之一,在记忆性CD8+ T细胞、NK细胞的发育、维持和增殖中具有重要作用。AA患者中IL-15水平升高,且与疾病活动度呈正相关 [52] 。其可能通过以下机制引起AA:抑制自身耐受性促进CD8+ T细胞的维持,并诱导部分免疫细胞分子的产生 [53] ;限制Treg细胞的作用,促进NKG2D表达 [54] ;参与JAK1/JAK3通路。阻断IL-15受体β可阻止小鼠AA的进展 [12] ,已有靶向IL-15/IL-15Rβ的单克隆抗体药物用于治疗自身免疫性疾病的临床试验 [55] 。但有关研究仍然缺乏,IL-15在AA中的具体作用机制及靶向该因子的治疗研究有待进一步深入。

2.4. JAK/STAT通路

JAK/STAT通路通过调节基因转录在免疫反应和生理功能中发挥重要作用。在皮肤炎症性疾病中,JAK/STAT信号通路起关键作用 [56] 。AA中上调的IFN-γ作用于滤泡上皮细胞上的JAK1/2受体,刺激IL-2和IL-15的产生;IL-15等γc细胞因子结合NKG2D CD8+ T细胞表面的JAK1/3受体,促进NKG2D8+ T细胞的激活,进一步释放IFN-γ、IL-15,这种正反馈回路导致AA疾病的发生及进展 [12] [57] 。其他细胞因子如IL-2、IL-7也参与JAK1/JAK3信号传导,有助于AA的发展 [18] 。这些观点和AA患者的GWAS研究的证实为AA中开发JAK抑制剂提供了理论基础。针对JAK通路的抑制剂,如托法替布 [58] 、鲁索替尼 [59] 、巴瑞替尼 [60] 等,被用于治疗AA,主要通过阻断免疫信号传导、抑制T细胞产生、刺激毛囊干细胞来恢复毛囊生长 [61] 。巴瑞替尼由于其有效性,是目前唯一被美国FDA批准用于治疗AA的JAK抑制剂,分别用2 mg或4 mg巴瑞替尼治疗严重AA,实现SALT评分 ≤ 20的患者分别为19.4%~22.8%、35.9%~38.8%,其疗效有限,且伴有一些副作用如感染、痤疮 [60] [62] 。因此,尽管JAK抑制剂目前在AA的治疗中存在一定地位,但副作用及不完全的疗效仍存在一定挑战。

3. 总结与展望

近年来,对于斑秃(AA)的免疫学研究取得了显著进展,表明其与机体免疫异常密切相关。免疫细胞和因子的异常表达是斑秃发生的重要因素。目前,免疫疗法是最常用的治疗方法之一,通过调节免疫细胞活性,抑制异常免疫反应从而达到治疗目的。尽管已有一些方法取得了良好效果,但个体差异和治疗副作用仍是挑战。因此,未来的研究需要在免疫疗法的有针对性、有效性、安全性和持久性等方面进行更深入的探索,以确定下一个治疗靶点,开发更精确、更有效的治疗方法,改善患者的生活质量。

基金项目

云南省教育厅科学研究基金项目(编号:2023Y0992)。

NOTES

*通讯作者。

参考文献

[1] Lee, H.H., Gwillim, E., Patel, K.R., et al. (2020) Epidemiology of Alopecia Areata, Ophiasis, Totalis, and Universalis: A Systematic Review and Meta-Analysis. Journal of the American Academy of Dermatology, 82, 675-682.
https://doi.org/10.1016/j.jaad.2019.08.032
[2] Jang, H., Park, S., Kim, M.S., et al. (2023) Global, Regional and National Burden of Alopecia Areata and Its Associated Diseases, 1990-2019: A Systematic Analysis of the Global Burden of Disease Study 2019. European Journal of Clinical Investigation, 53, e13958.
https://doi.org/10.1111/eci.13958
[3] Simakou, T., Butcher, J.P., Reid, S., et al. (2019) Alopecia Areata: A Multifactorial Autoimmune Condition. Journal of Autoimmunity, 98, 74-85.
https://doi.org/10.1016/j.jaut.2018.12.001
[4] Bertolini, M., McElwee, K., Gilhar, A., et al. (2020) Hair Follicle Immune Privilege and Its Collapse in Alopecia Areata. Experimental Dermatology, 29, 703-725.
https://doi.org/10.1111/exd.14155
[5] Pratt, C.H., King, L.E., Messenger, A.G., et al. (2017) Alopecia Areata. Nature Reviews Disease Primers, 3, Article No. 17011.
https://doi.org/10.1038/nrdp.2017.11
[6] Paus, R., Nickoloff, B. and Ito, T. (2005) A  ‘Hairy’ Privilege. Trends in Immunology, 26, 32-40.
https://doi.org/10.1016/j.it.2004.09.014
[7] Żeberkiewicz, M., Rudnicka, L. and Malejczyk, J. (2020) Immunology of Alopecia Areata. Central European Journal of Immunology, 45, 325-333.
https://doi.org/10.5114/ceji.2020.101264
[8] Zhou, C., Li, X., Wang, C., et al. (2021) Alopecia Areata: An Update on Etiopathogenesis, Diagnosis, and Management. Clinical Reviews in Allergy & Immunology, 61, 403-423.
https://doi.org/10.1007/s12016-021-08883-0
[9] Dobreva, A., Paus, R. and Cogan, N.G. (2018) Analysing the Dynamics of a Model for Alopecia Areata as an Autoimmune Disorder of Hair Follicle Cycling. Mathematical Medicine and Biology : A Journal of the IMA, 35, 387-407.
https://doi.org/10.1093/imammb/dqx009
[10] Paus, R., Ito, N., Takigawa, M., et al. (2003) The Hair Follicle and Immune Privilege. Journal of Investigative Dermatology Symposium Proceedings, 8, 188-194.
https://doi.org/10.1046/j.1087-0024.2003.00807.x
[11] Anzai, A., Wang, E.H.C., Lee, E.Y., et al.(2019) Pathomechanisms of Immune-Mediated Alopecia. International Immunology, 31, 439-447.
https://doi.org/10.1093/intimm/dxz039
[12] Xing, L., Dai, Z., Jabbari, A., et al. (2014) Alopecia Areata Is Driven by Cytotoxic T Lymphocytes and Is Reversed by JAK Inhibition. Nature Medicine, 20, 1043-1049.
https://doi.org/10.1038/nm.3645
[13] Mcelwee, K.J., Freyschmidt-Paul, P. and VitaItacolonna, M. (2005) Transfer of CD8 Þ Cells Induces Localized Hair Loss Whereas CD4 Þ /CD25À Cells Promote Systemic Alopecia Areata and CD4 Þ /CD25 Þ Cells Blockade Disease Onset in the C3H/HeJ Mouse Model. The Journal of Investigative Dermatology, 124, 947-957.
https://doi.org/10.1111/j.0022-202X.2005.23692.x
[14] Eagle, R.A., Traherne, J.A., Hair, J.R., et al. (2009) ULBP6/RAET1L Is an Additional Human NKG2D Ligand. European Journal of Immunology, 39, 3207-3216.
https://doi.org/10.1002/eji.200939502
[15] Petukhova, L., Duvic, M., Hordinsky, M., et al. (2010) Genome-Wide Association Study in Alopecia Areata Implicates Both Innate and Adaptive Immunity. Nature, 466, 113-117.
https://doi.org/10.1038/nature09114
[16] Hashimoto, K., Yamada, Y., Fujikawa, M., et al. (2021) Altered T Cell Subpopulations and Serum Anti-TYRP2 and Tyrosinase Antibodies in the Acute and Chronic Phase of Alopecia Areata in the C3H/HeJ Mouse Model. Journal of Dermatological Science, 104, 21-29.
https://doi.org/10.1016/j.jdermsci.2021.09.001
[17] Zhang, X., Zhao, Y., Ye, Y., et al. (2015) Lesional Infiltration of Mast Cells, Langerhans Cells, T Cells and Local Cytokine Profiles in Alopecia Areata. Archives of Dermatological Research, 2015, 307, 319-331.
https://doi.org/10.1007/s00403-015-1539-1
[18] Passeron, T., King, B., Seneschal, J., et al. (2023) Inhibition of T-Cell Activity in Alopecia Areata: Recent Developments and New Directions. Frontiers in Immunology, 14, Article 1243556.
https://doi.org/10.3389/fimmu.2023.1243556
[19] Kasumagić-Halilovic, E., Cavaljuga, S., Ovcina-Kurtovic, N., et al. (2018) Serum Levels of Interleukin-2 in Patients with Alopecia Areata: Relationship with Clinical Type and Duration of the Disease. Skin Appendage Disorders, 4, 286-290.
https://doi.org/10.1159/000486462
[20] Omar, S.I., Hamza, A.M., Eldabah, N., et al. (2021) IFN-α and TNF-α Serum Levels and Their Association with Disease Severity in Egyptian Children and Adults with Alopecia Areata. International Journal of Dermatology, 60, 1397-1404.
https://doi.org/10.1111/ijd.15658
[21] Barahmani, N., Lopez, A., Babu, D., et al. (2010) Serum T Helper 1 Cytokine Levels Are Greater in Patients with Alopecia Areata Regardless of Severity or Atopy. Clinical and Experimental Dermatology, 35, 409-416.
https://doi.org/10.1111/j.1365-2230.2009.03523.x
[22] Waśkiel-Burnat, A., Osińska, M., Salińska, A., et al. (2021) The Role of Serum Th1, Th2, and Th17 Cytokines in Patients with Alopecia Areata: Clinical Implications. Cells, 10, Article 3397.
https://doi.org/10.3390/cells10123397
[23] Sato-Kawamura, M., Aiba, S. and Tagami, H. (2003) Strong Expression of CD40, CD54 and HLA-DR Antigen and Lack of Evidence for Direct Cellular Cytotoxicity Are Unique Immunohistopathological Features in Alopecia Areata. Archives of Dermatological Research, 294, 536-543.
https://doi.org/10.1007/s00403-002-0354-7
[24] Zaaroura, H., Gilding, A.J. and Sibbald, C. (2023) Biomarkers in Alopecia Areata: A Systematic Review and Meta-Analysis. Autoimmunity Reviews, 22, Article ID: 103339.
https://doi.org/10.1016/j.autrev.2023.103339
[25] Czarnowicki, T., He, H.Y., Wen, H.C., et al. (2018) Alopecia Areata Is Characterized by Expansion of Circulating Th2/Tc2/Th22, within the Skin-Homing and Systemic T-Cell Populations. Allergy, 73, 713-723.
https://doi.org/10.1111/all.13346
[26] Mohan, G.C. and Silverberg, J.I. (2015) Association of Vitiligo and Alopecia Areata with Atopic Dermatitis: A Systematic Review and Meta-Analysis. JAMA Dermatology, 151, 522-528.
https://doi.org/10.1001/jamadermatol.2014.3324
[27] Yan, X., Tayier, M., Cheang, S.T., et al. (2023) Hair Repigmentation and Regrowth in a Dupilumab-Treated Paediatric Patient with Alopecia Areata and Atopic Dermatitis: A Case Report. Therapeutic Advances in Chronic Disease, 14.
https://doi.org/10.1177/20406223231191049
[28] Guttman-Yassky, E., Renert-Yuval, Y., Bares, J., et al. (2022) Phase 2a Randomized Clinical Trial of Dupilumab (Anti-IL-4Rα) for Alopecia Areata Patients. Allergy, 77, 897-906.
https://doi.org/10.1111/all.15071
[29] Ito, T., Kageyama, R., Nakazawa, S. and Honda, T. (2020) Understanding the Significance of Cytokines and Chemokines in the Pathogenesis of Alopecia Areata. Experimental Dermatology, 29, 726-732.
https://doi.org/10.1111/exd.14129
[30] Wu, B., Zhang, S., Guo, Z., et al. (2021) The TGF-β Superfamily Cytokine Activin-A Is Induced during Autoimmune Neuroinflammation and Drives Pathogenic Th17 Cell Differentiation. Immunity, 54, 308-323.E6.
https://doi.org/10.1016/j.immuni.2020.12.010
[31] Guttman-Yassky, E., Nia, J.K., Hashim, P.W., et al. (2018) Efficacy and Safety of Secukinumab Treatment in Adults with Extensive Alopecia Areata. Archives of Dermatological Research, 310, 607-614.
https://doi.org/10.1007/s00403-018-1853-5
[32] Słowińska, M., Kardynal, A., Warszawik, O., et al. (2010) Alopecia Areata Developing Paralell to Improvement of Psoriasis during Ustekinumab Therapy. Journal of Dermatological Case Reports, 4, 15-17.
https://doi.org/10.3315/jdcr.2010.1041
[33] Wing, K., Onishi, Y., Prieto-Martin, P., et al. (2008) CTLA-4 Control over Foxp3 Regulatory T Cell Function. Science, 322, 271-275.
https://doi.org/10.1126/science.1160062
[34] Speiser, J.J., Mondo, D., Mehta, V., et al. (2019) Regulatory T-Cells in Alopecia Areata. Journal of Cutaneous Pathology, 46, 653-658.
https://doi.org/10.1111/cup.13479
[35] Zheng, Y. and Rudensky. A.Y. (2007) Foxp3 in Control of the Regulatory T Cell Lineage. Nature Immunology, 8, 457-462.
https://doi.org/10.1038/ni1455
[36] Loh, S.H., Moon, H.N., Lew, B.L., et al. (2018) Role of T Helper 17 Cells and T Regulatory Cells in Alopecia Areata: Comparison of Lesion and Serum Cytokine between Controls and Patients. Journal of the European Academy of Dermatology and Venereology, 32, 1028-1033.
https://doi.org/10.1111/jdv.14775
[37] Rossi, A., Cantisani, C., Carlesimo, M., et al. (2012) Serum Concentrations of IL-2, IL-6, IL-12 and TNF-α in Patients with Alopecia Areata. International Journal of Immunopathology and Pharmacology, 25, 781-788.
https://doi.org/10.1177/039463201202500327
[38] Kubo, R., Muramatsu, S., Sagawa, Y., et al. (2017) Activated Regulatory T Cells Are Increased in Patients with Alopecia Areata for Suppressing Disease Acitivity. Journal of Dermatological Science, 86, E27-E28.
https://doi.org/10.1016/j.jdermsci.2017.02.080
[39] Jalili, R.B., Kilani, R.T., Li, Y., et al. (2023) The Potential of Regulatory T Cell-Based Therapies for Alopecia Areata. Frontiers in Immunology, 14, Article 1111547.
https://doi.org/10.3389/fimmu.2023.1111547
[40] Ito, T., Ito, N., Saatoff, M., et al. (2008) Maintenance of Hair Follicle Immune Privilege Is Linked to Prevention of NK Cell Attack. The Journal of Investigative Dermatology, 128, 1196-1206.
https://doi.org/10.1038/sj.jid.5701183
[41] Shi, F.D. and Van Kaer, L. (2006) Reciprocal Regulation between Natural Killer Cells and Autoreactive T Cells. Nature Reviews Immunology, 6, 751-760.
https://doi.org/10.1038/nri1935
[42] Abou Rahal., J., Kurban, M., Kibbi, A.G. and Abbas, O. (2016) Plasmacytoid Dendritic Cells in Alopecia Areata: Missing Link? Journal of the European Academy of Dermatology and Venereology, 30, 119-123.
https://doi.org/10.1111/jdv.12932
[43] Ito, T., Suzuki, T., Sakabe, J.I., et al. (2020) Plasmacytoid Dendritic Cells as a Possible Key Player to Initiate Alopecia Areata in the C3H/HeJ Mouse. Allergology International, 69, 121-131.
https://doi.org/10.1016/j.alit.2019.07.009
[44] Dias De Oliveira, N.F., Santi, C.G., Maruta, C.W., et al. (2021) Plasmacytoid Dendritic Cells in Dermatology. Anais Brasileiros de Dermatologia, 96, 76-81.
https://doi.org/10.1016/j.abd.2020.08.006
[45] Tomaszewska, K., Kozłowska, M., Kaszuba, A., et al. (2020) Increased Serum Levels of IFN-γ, IL-1β, and IL-6 in Patients with Alopecia Areata and Nonsegmental Vitiligo. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5693572.
https://doi.org/10.1155/2020/5693572
[46] Tabara, K., Kozłowska, M., Jędrowiak, A., et al. (2019) Serum Concentrations of Selected Proinflammatory Cytokines in Children with Alopecia Areata. Postepy Dermatologii i Alergologii, 36, 63-69.
https://doi.org/10.5114/ada.2019.82826
[47] Ma, X., Chen, S., Jin, W. and Gao, Y. (2017) Th1/Th2 PB Balance and CD200 Expression of Patients with Active Severe Alopecia Areata. Experimental and Therapeutic Medicine, 13, 2883-2887.
https://doi.org/10.3892/etm.2017.4312
[48] Agamia, N., Apalla, Z., El Achy, S., et al. (2020) Interferon-γ Serum Level and Immunohistochemical Expression of CD8 Cells in Tissue Biopsies in Patients with Alopecia Areata in Correlation with Trichoscopic Findings. Dermatologic Therapy, 33, e13718.
https://doi.org/10.1111/dth.13718
[49] Monteleone, G., Pallone, F. and Macdonald, T.T. (2009) Interleukin-21 as a New Therapeutic Target for Immune-Me-diated Diseases. Trends in Pharmacological Sciences, 30, 441-447.
https://doi.org/10.1016/j.tips.2009.05.006
[50] Dai, Z., Xing, L., Cerise, J., et al. (2016) CXCR3 Blockade Inhibits T Cell Migration Into the Skin and Prevents Development of Alopecia Areata. Journal of Immunology, 197, 1089-1099.
https://doi.org/10.4049/jimmunol.1501798
[51] Gilhar, A., Laufer-Britva, R., Keren, A. and Paus, R. (2019) Frontiers in Alopecia Areata Pathobiology Research. The Journal of Allergy and Clinical Immunology, 144, 1478-1489.
https://doi.org/10.1016/j.jaci.2019.08.035
[52] Kamil, Z.A., Abdullah, G.A. and Zalzala, H.H. (2023) Interleukin-15 and Tumor Necrosis Factor-α in Iraqi Patients with Alopecia Areata. Dermatology Research and Practice, 2023, Article ID: 5109772.
https://doi.org/10.1155/2023/5109772
[53] Waldmann, T.A. (2004) Targeting the Interleukin-15/Interleukin-15 Receptor System in Inflammatory Autoimmune Diseases. Arthritis Research & Therapy, 6, Article No. 174.
https://doi.org/10.1186/ar1202
[54] El Aziz Ragab, M.A., Hassan, E.M., El Niely, D.A.E.M., et al.(2020) Serum Level of Interleukin-15 in Active Alopecia Areata Patients and Its Relation to Age, Sex, and Disease Severity. Postepy Dermatologii i Alergologii, 37, 904-908.
https://doi.org/10.5114/ada.2020.102103
[55] Waldmann, T.A. (2013) The Biology of IL-15: Implications for Cancer Therapy and the Treatment of Autoimmune Disorders. The Journal of Investigative Dermatology Symposium Proceedings, 16, S28-S30.
https://doi.org/10.1038/jidsymp.2013.8
[56] O’Shea, J.J., Schwartz, D.M., Villarino, A.V., et al. (2015) The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention. Annual Review of Medicine, 66, 311-328.
https://doi.org/10.1146/annurev-med-051113-024537
[57] O’Shea, J.J. and Plenge, R. (2012) JAK and STAT Signaling Molecules in Immunoregulation and Immune-Mediated Disease. Immunity, 36, 542-550.
https://doi.org/10.1016/j.immuni.2012.03.014
[58] Hogan, S., Wang, S., Ibrahim, O., et al. (2019) Long-Term Treatment with Tofacitinib in Severe Alopecia Areata: An Update. The Journal of Clinical and Aesthetic Dermatology, 12, 12-14.
[59] Almutairi, N., Nour, T.M. and Hussain, N.H. (2019) Janus Kinase Inhibitors for the Treatment of Severe Alopecia Areata: An Open-Label Comparative Study. Dermatology, 235, 130-136.
https://doi.org/10.1159/000494613
[60] King, B., Ohyama, M., Kwon, O., et al. (2022) Two Phase 3 Trials of Baricitinib for Alopecia Areata. The New England Journal of Medicine, 386, 1687-1699.
https://doi.org/10.1056/NEJMoa2110343
[61] Muddebihal, A, Khurana, A. and Sardana, K. (2023) JAK Inhibitors in Dermatology: The Road Travelled and Path Ahead, a Narrative Review. Expert Review of Clinical Pharmacology, 16, 279-295.
https://doi.org/10.1080/17512433.2023.2193682
[62] Sechi, A., Song, J., Dell’Antonia, M., et al. (2023) Adverse Events in Patients Treated with Jak-Inhibitors for Alopecia Areata: A Systematic Review. Journal of the European Academy of Dermatology and Venereology, 37, 1535-1546.
https://doi.org/10.1111/jdv.19090