刺芒柄花素在小鼠烟曲霉菌性角膜炎中保护作用的研究
Study on the Protective Effect of Formononetin in Mouse Aspergillus fumigates Keratitis
DOI: 10.12677/acm.2024.1441034, PDF, HTML, XML, 下载: 25  浏览: 48 
作者: 丰竹慧, 李 翠*:青岛大学附属医院眼科,山东 青岛
关键词: 烟曲霉菌性角膜炎刺芒柄花素抗炎Aspergillus fumigatus Keratitis Formononetin Anti-Inflammation
摘要: 刺芒柄花素(Formononetin, FMN),又称芒柄花素、芒柄花黄素,是一种异黄酮类中药单体,主要存在于黄芪、红车轴草、葛根等豆科植物中。最近的大量研究表明,刺芒柄花素具有抗炎、抗氧化、抗凋亡、抗菌、抗肿瘤和雌激素样作用等,药用价值高。然而,刺芒柄花素在真菌性角膜炎中的作用尚未被报道。本文旨在研究刺芒柄花素在烟曲霉菌性角膜炎中的保护作用。方法:在体外使用CCK-8试剂盒检测刺芒柄花素的毒性作用。用灭活的烟曲霉菌菌丝预先刺激RAW264.7细胞1小时,随后将刺芒柄花素溶液或DMSO溶液加入共培养7小时,通过PCR检测RAW264.7细胞炎症因子的mRNA表达水平。为了进一步明确刺芒柄花素在体内对角膜炎的治疗作用及炎症因子水平的影响,我们将烟曲霉菌孢子通过角膜基质内注射建立小鼠烟曲霉菌角膜炎模型,并使用刺芒柄花素溶液或DMSO溶液局部点眼治疗,通过PCR实验检测炎症因子的表达水平。结果:刺芒柄花素对RAW264.7细胞的存活能力影响小。与DMSO处理组相比,刺芒柄花素处理可以降低灭活菌丝刺激导致的细胞中炎症因子的表达升高。此外,在体内实验中,刺芒柄花素可以减轻小鼠烟曲霉菌性角膜炎的严重程度,减低感染角膜中炎症因子的表达。结论:刺芒柄花素可以降低小鼠烟曲霉菌性角膜炎的炎症因子表达水平起到抗炎保护作用。
Abstract: Formononetin (FMN) is an isoflavone monomer commonly found in legumes such as Astragalus membranaceus, Red Axle Grass, and Pueraria lobata in traditional Chinese medicine. Numerous recent studies have demonstrated its various medicinal properties including anti-inflammatory, antioxidant, anti-apoptotic, antibacterial, antitumor, and estrogen-like effects. However, the potential role of FMN in fungal keratitis has not been extensively explored. This study aimed to investigate the protective effects of FMN in Aspergillus fumigatus (A. fumigatus) keratitis. Methods: In vitro experiments utilized the CCK-8 kit to assess the toxicity of FMN. RAW264.7 cells were pre-treated with inactivated A. fumigatus hyphae for 1 hour, followed by evaluation of mRNA expression levels of inflammatory factors after 7 hours of co-culture with FMN or DMSO. To further elucidate the therapeutic impact of FMN on A. fumigatus keratitis and inflammatory factor levels in vivo, a model of A. fumigatus keratitis was established in mice via intracorneal stromal injection. Local eye spot treatment with FMN solution or DMSO solution was administered, and inflammatory factor expression levels were assessed through PCR analysis. Results: FMN had no significant effect on the viability of RAW264.7 cells. In A. fumigatus inactivated hyphae-stimulated RAW264.7 cells, FMN treatment led to a reduction of inflammatory cytokine expression levels compared to the DMSO group. Moreover, in vivo experiments demonstrated that FMN could alleviate the severity of A. fumigatus keratitis in mice and decrease inflammatory factor expression levels in infected corneas. In conclusion, FMN exhibited anti-inflammatory protective effects by reducing inflammatory factor expression levels in A. fumigatus keratitis in mice.
文章引用:丰竹慧, 李翠. 刺芒柄花素在小鼠烟曲霉菌性角膜炎中保护作用的研究[J]. 临床医学进展, 2024, 14(4): 385-393. https://doi.org/10.12677/acm.2024.1441034

1. 引言

真菌性角膜炎是一种感染性眼病,全球每年至少有一百万名患者受到真菌性角膜炎的影响,尤其在以农业为主的一些国家发病率较高,感染后角膜穿孔的风险约为10%,超过一半的真菌性角膜炎患者将丧失部分甚至全部视力造成单眼失明,致盲率高 [1] [2] 。真菌性角膜炎最常见的病原体是镰刀菌和烟曲霉菌 [3] [4] 。该眼病多继发于角膜植物外伤史,糖尿病,免疫功能失调,长期佩戴隐形眼镜以及长期使用类固醇激素和抗生素等情况 [5] [6] [7] 。然而,目前治疗真菌性角膜炎的药物存在多种局限性,例如眼表渗透性差导致生物利用率低(<5%),以及真菌耐药性等 [8] [9] 。因此,真菌性角膜炎的治疗存在极大的挑战性。事实上,在真菌性角膜炎中,除了真菌的影响,宿主过度的免疫反应也会破坏角膜结构,导致角膜炎症的进一步加重 [10] 。研究表明,控制真菌性角膜炎中过度的炎症反应可以起到保护作用 [11] 。

刺芒柄花素在黄芪、红车轴草和葛根等植物的根茎中广泛存在,是一种异黄酮类化合物,具有强大的抗炎和抗氧化等功效 [12] [13] 。在LPS诱导的小鼠急性乳腺炎中,刺芒柄花素可以通过抑制NF-κB信号通路,降低TNF-α和IL-1β等炎症因子的表达来发挥抗炎作用 [14] 。此外,有研究表明,在由LPS诱导的小鼠急性肺损伤中,刺芒柄花素可以减少支气管肺泡灌洗液中炎症细胞的数量,并且改善肺部的组织学变化 [15] 。这引起了我们极大的兴趣,我们推测刺芒柄花素在真菌性角膜炎中可以起到抗炎保护作用。

2. 实验材料

2.1. 实验物品

2.1.1. 实验对象

SPF级,8周龄的雌性C57BL/6小鼠购自中国江苏华创信诺实验动物中心。实验动物的操作符合美国眼科和视觉研究协会(ARVO)制定的标准。本实验已通过青岛大学附属医院伦理委员会的批准。

2.1.2. 实验用烟曲霉菌菌种

烟曲霉菌株(NO3.0772)自中国普通微生物文化采集中心获取。

2.1.3. 实验细胞

小鼠RAW264.7巨噬细胞株从中国科学院获得。

2.2. 实验主要相关耗材

2.2.1. 烟曲霉菌培养与孢子悬液制备所需耗材及试剂

蛋白胨,葡萄糖,磷酸盐缓冲液粉末购自北京索莱宝公司。

2.2.2. 烟曲霉菌角膜炎小鼠模型的建立

异氟烷(深圳瑞沃德生命科技股份有限公司);10%水合氯醛(安徽雷根生物有限公司);30 G一次性注射器(上海康德莱公司);10 μL微量注射器(瑞士Hamilton公司)。

2.2.3. 刺芒柄花素溶液制备

刺芒柄花素粉末(MedChemExpress公司);二甲基亚砜(DMSO北京索莱宝公司)。

2.2.4. CCK-8检测

CCK-8检测试剂盒(MedChemExpress公司)。

2.2.5. RT-PCR相关试剂及耗材

DEPC水(上海生工股份有限公司);氯仿(青岛捷隆化工有限公司);RNAiso Plus (大连TaKaRa);异丙醇(南京宏益化学试剂有限公司);SYBR(南京诺唯赞)。

2.3. 实验方法

2.3.1. CCK-8实验

将RAW 264.7细胞悬液接种于96孔板中,在细胞培养箱中培养约24小时,随后将刺芒柄花素以8、16、32、64、128、256、512 μg/mL的终浓度加入96孔板。刺芒柄花素处理培养24小时后,向每孔中加入CCK-8,在细胞培养箱避光继续孵育,3小时后测量450 nm处的吸光度数值。

2.3.2. 烟曲霉菌培养与孢子悬液的制备

将烟曲霉菌标准菌株接种于沙氏琼脂培养基,置于恒温箱内孵育2~3天,后用无菌PBS冲洗菌丝,收集烟曲霉菌孢子并调整浓度为1 × 107 CFU/mL。将烟曲霉菌孢子接种于沙氏液体培养基,在37℃的120 rpm摇床恒温培养箱中培养6天,收集团块状形态的菌丝并充分研磨。将研磨的菌液离心,于菌丝沉淀中加入75%的酒精灭活。4℃过夜后将灭活菌丝使用无菌PBS充分洗涤离心,加入细胞培养液制备灭活菌丝悬液。

2.3.3. 小鼠真菌性角膜炎模型的建立

采用异氟烷吸入麻醉联合8%水合氯醛腹腔麻醉法对小鼠进行全身麻醉,全麻成功后在显微操作台上于小鼠瞳孔缘处角膜做隧道,深达角膜基质层,随后用微量注射器将2 μL孢子悬液(1 × 107 CFU/mL)经隧道注入,建立烟曲霉菌性角膜炎模型。右眼作为实验组,左眼作为空白对照组,左眼不予建模处理。建模成功后每日于裂隙灯下观察小鼠角膜混浊程度,同时进行每日4次的局部滴眼治疗,实验组右眼滴用128 μg/mL刺芒柄花素溶液,对照组右眼滴用0.5% DMSO溶液。作为空白对照组,两组左眼均不给予点眼处理。每天用裂隙灯观察小鼠角膜的混浊面积、混浊程度和溃疡形态,在感染后第1、3、5天拍照记录并进行临床评分。评分分级标准按照之前的实验进行 [16] 。

2.3.4. RAW264.7细胞处理

将RAW264.7细胞接种于12孔板后置于细胞培养箱培养,显微镜下观察至细胞密度达70%~80%后,预先1小时给予烟曲霉菌灭活菌丝刺激细胞,然后刺芒柄花素或DMSO共培养处理7小时后收集细胞用于后续PCR实验。

2.3.5. RT-PCR实验方法

1) 总RNA的提取及浓度测定

收集烟曲霉菌灭活菌丝刺激的RAW264.7细胞和烟曲霉菌感染后第三天的小鼠角膜,分别加入含RNAiso Plus试剂的EP管中,于冰盒上使其充分裂解后离心取上清,加入氯仿100 μL,混匀后离心,再次吸取上清液至另一EP管。将异丙醇加入收集的上清液中,颠倒混匀后离心,于沉淀中加入DEPC水配制的75%酒精,混匀后离心,将上清液缓慢弃去,随后将EP管置于室温干燥,加入DEPC水使管底沉淀彻底溶解。使用核酸蛋白分析仪检测RNA的浓度和纯度。

2) 逆转录及PCR

逆转录和PCR步骤按照说明书进行。首先,逆转录合成cDNA模板,后将SYBR Premix Ex Tap、引物、合成的cDNA模板和DEPC水配制成PCR反应液加入八连排,置于PCR仪进行扩增反应:预变性(95℃, 30 s);扩增(95℃, 5 s, 60℃, 30 s);退火,延伸,溶解曲线(95℃, 15 s, 60℃, 30 s, 95℃, 15 s)。所用到的内参和目的基因的引物序列见表1

Table 1. PCR primer sequence

表1. PCR引物序列

2.3.6. 统计学方法

实验数据分析用GraphPad Prism 9.5软件,两组数据的比较采用未配对、双尾t检验,三组及以上采用OnewayANOVA分析。实验数据用x ± SEM表示,各项实验均独立重复至少三次。P < 0.05时具有统计学意义。

3. 结果

3.1. 刺芒柄花素对RAW264.7细胞存活能力的影响

CCK-8实验检测了刺芒柄花素对RAW264.7细胞的毒性,即对细胞生存活力的影响。结果显示,与对照组相比,≤512 μg/mL浓度的刺芒柄花素没有降低RAW264.7的存活能力,对细胞的毒性低(图1(b))。

(a) (b)注:(a) 为刺芒柄花素分子结构式;(b) 为CCK-8实验检测刺芒柄花素对RAW264.7细胞生存活力的影响。

Figure 1. Structural formula of FMN and toxicity of FMN to RAW264.7 cells

图1. 刺芒柄花素的结构式及刺芒柄花素对RAW264.7细胞生存活力的影响

3.2. 刺芒柄花素处理降低了烟曲霉菌刺激的RAW264.7细胞炎症因子的表达水平

RAW264.7细胞经过烟曲霉菌灭活菌丝预先刺激1小时后,加入刺芒柄花素或DMSO处理7小时后检测炎症因子的表达水平。RT-PCR结果显示,与正常组相比,烟曲霉菌处理组细胞中IL-1β,IL-6,iNOS和NLRP3的mRNA表达水平升高;烟曲霉菌处理组和烟曲霉菌 + DMSO组的炎症因子表达无显著性差异。烟曲霉菌 + 刺芒柄花素处理组与烟曲霉菌 + DMSO处理组相比,刺芒柄花素处理降低了IL-1β,IL-6,iNOS和NLRP3的mRNA表达,差异具有显著性。同时,与正常组相比,刺芒柄花素单独处理和DMSO单独处理对细胞炎症因子IL-1β,IL-6,iNOS和NLRP3表达的影响没有显著性差异(图2(a)~(d))。

注:(a)~(d) 经烟曲霉菌灭活菌丝刺激后RAW264.7细胞炎症介质表达水平升高,经过刺芒柄花素处理可以降低烟曲霉菌刺激引起的IL-1β,IL-6,iNOS和NLRP3炎症因子的升高。

Figure 2. FMN reduced the expression of inflammatory factors in Aspergillus fumigatus-stimulated RAW264.7 cells

图2. 刺芒柄花素降低烟曲霉菌灭活菌丝刺激的RAW264.7细胞中炎症因子的表达

3.3. 刺芒柄花素降低小鼠烟曲霉菌角膜炎临床评分

在烟曲霉菌感染小鼠角膜后的第一天,第三天和第五天,在裂隙灯下观察小鼠角膜严重情况。可以观察到刺芒柄花素处理组小鼠角膜溃疡的面积缩小,角膜混浊程度下降。而DMSO处理组小鼠角膜溃疡面积较大,角膜混浊较重,角膜水肿明显,且虹膜纹理不清,部分出现严重的角膜新生血管翳(图3(a))。此外可以观察到第三天时小鼠烟曲霉菌性角膜炎严重程度较第五天重。对DMSO处理组和刺芒柄花素处理烟曲霉菌小鼠角膜炎进行临床评分,结果表明与DMSO对照组相比,刺芒柄花素处理可以显著降低小鼠角膜炎的临床评分,改善小鼠角膜炎的预后(图3(b))。

注:(a) 为DMSO或刺芒柄花素处理的烟曲霉菌感染后第1天、第3天和第5天的小鼠角膜炎裂隙灯前节照相;(b) 为DMSO或刺芒柄花素处理组小鼠角膜炎的临床评分(n = 6只/组)。

Figure 3. FMN attenuated the severity of Aspergillus fumigatus keratitis in mice

图3. 刺芒柄花素减轻小鼠烟曲霉菌性角膜炎严重程度

注:(a)~(b) 在小鼠烟曲霉菌角膜炎的第三天,与对照组相比,刺芒柄花素处理降低了角膜中IL-1β和IL-6的mRNA表达水平。

Figure 4. FMN reduced the expression of inflammatory factors in mice Aspergillus fumigatus keratitis

图4. 刺芒柄花素降低了小鼠烟曲霉菌性角膜炎中炎症因子的表达水平

3.4. 刺芒柄花素降低小鼠烟曲霉菌角膜炎中炎症因子的表达

为了进一步探究刺芒柄花素在小鼠烟曲霉菌性角膜炎中发挥的抗炎作用,我们测定了烟曲霉菌性角膜炎小鼠感染角膜中的炎症因子的表达。由于小鼠烟曲霉菌性角膜炎在第三天时严重程度较重,临床评分较高,所以取感染后第三天的小鼠角膜检测角膜中炎症因子的表达。RT-PCR结果显示,与DMSO对照组相比,刺芒柄花素处理降低了感染后第三天小鼠角膜的IL-1β和IL-6 mRNA 表达水平(图4(a)~(b))。

4. 讨论

真菌性角膜炎在一些热带、亚热带地区的发展中国家发病率较高,主要发生在农民群体中。由于经济能力有限,就医意识较差等多种原因,往往会导致诊治不及时 [17] 。这可能造成角膜溃疡穿孔甚至眼球摘除,进而造成极大的经济损失和社会负担 [18] 。此外,真菌性角膜炎的治疗手段有限。现有的治疗药物主要包括那他霉素、伏立康唑和两性霉素B等抗真菌药物。然而,这些药物眼表渗透性较差,生物利用度较低,且单纯抗真菌治疗的效果难以达到预期的效果 [19] [20] 。穿透性角膜移植手术可以挽救部分病人的视力,但由于角膜供体的数量缺乏,全球范围内约有53%的角膜炎患者无法进行角膜移植手术 [21] [22] 。因此,真菌性角膜炎的致盲率和失明风险很高。丝状真菌(如烟曲霉菌和镰刀菌)是真菌性角膜炎的常见病原体 [23] 。当真菌通过受损的角膜上皮屏障并进入基质时,会释放蛋白酶来直接破坏角膜基质胶原,损害角膜的结构,导致急性和慢性的视力丧失 [24] 。而真菌性角膜炎的发病是由真菌病原体和宿主的免疫反应共同介导的,除了真菌对角膜组织的破坏,宿主炎症反应过强是造成角膜混浊和视力丧失的主要原因,这是真菌和宿主免疫反应的复杂相互作用 [25] 。角膜上皮细胞及免疫细胞可以感知并识别真菌病原体,其表面的模式识别受体(PRRs)可以与真菌的β-葡聚糖、甘露聚糖等病原体相关分子模式(PAMPs)结合,进一步引起白细胞介素(IL-8等)、肿瘤坏死因子(TNF-α)、趋化因子(CCL-2等)等炎症介质增加,这些炎症介质参与炎症反应的启动和维持 [21] 。真菌感染还会刺激巨噬细胞、树突状细胞等免疫细胞的活化。这些细胞会进一步产生炎症介质,并参与调节抗真菌免疫。同时,中性粒细胞趋化到感染部位,释放蛋白水解酶,造成角膜组织损伤 [17] [26] 。我们之前的研究表明,控制过度的炎症反应在真菌性角膜炎中起到了保护作用,并且能够改善角膜炎的预后 [27] [28] [29] 。

筛选治疗真菌性角膜炎的有前途的化合物,可能会揭示治疗这种威胁视力的疾病的新策略 [30] 。刺芒柄花素是生物安全性高的一种异黄酮类化合物,被广泛应用于抗炎、抗氧化、抗凋亡等,这些作用在妊娠期脓毒症、急性胰腺炎、脑缺血再灌注损伤等疾病模型中得到验证 [31] [32] [33] 。研究表明,在急性胰腺炎疾病模型中,刺芒柄花素可以减轻胰腺炎的氧化应激反应,降低组织中TNF-α、IL-6、IL-1β的表达水平 [33] 。刺芒柄花素可以通过减少TNF-α,IL-6和IL-1β的表达来减轻LPS诱导的神经元细胞的炎症反应 [34] [35] 。这与我们的实验结果一致,在我们的实验中,烟曲霉菌刺激可以导致RAW264.7细胞中炎症因子的表达增加,而刺芒柄花素的应用可以减少炎症因子的表达。此外,在小鼠烟曲霉菌角膜炎模型中,DMSO治疗组角膜混浊较重,溃疡面积较大,虹膜纹理不清,临床评分高。而刺芒柄花素处理组小鼠角膜混浊程度减轻,角膜透明度提高,溃疡面积缩小,临床评分降低。这些结果表明刺芒柄花素可以减轻烟曲霉菌性角膜炎小鼠的严重程度,改善真菌性角膜炎的预后。这为今后真菌性角膜炎治疗药物的开发提供了新的证据。

参考文献

[1] Brown, L., Leck, A.K., Gichangi, M., Burton, M.J. and Denning, D.W. (2021) The Global Incidence and Diagnosis of Fungal Keratitis. The Lancet Infectious Diseases, 21, E49-E57.
http://doi.org/10.1016/s1473-3099(20)30448-5
[2] Maharana, P.K., Sharma, N., Nagpal, R., Jhanji, V., Das, S. and Vajpayee, R.B. (2016) Recent Advances in Diagnosis and Management of Mycotic Keratitis. Indian Journal of Ophthalmology, 64, 346-357.
http://doi.org/10.4103/0301-4738.185592
[3] Watson, S.L., Cabrera-Aguas, M., Keay, L., Khoo, P., McCall, D., and Lahra, M.M. (2020) The Clinical and Microbiological Features and Outcomes of Fungal Keratitis over 9 Years in Sydney, Australia. Mycoses, 63, 43-51.
http://doi.org/10.1111/myc.13009
[4] Szaliński, M., Zgryźniak, A., Rubisz, I., Gajdzis, M., Kaczmarek, R. and Przeździecka-Dołyk, J. (2021) Fusarium Keratitis—Review of Current Treatment Possibilities. Journal of Clinical Medicine, 10, Article 5468.
http://doi.org/10.3390/jcm10235468
[5] Stapleton, F., Shrestha, G.S., Vijay, A.K. and Carnt, N. (2022) Epidemiology, Microbiology, and Genetics of Contact Lens-Related and Non-Contact Lens-Related Infectious Keratitis. Eye & Contact Lens: Science & Clinical Practice, 48, 127-133.
http://doi.org/10.1097/icl.0000000000000884
[6] Niu, L., Liu, X., Ma, Z., Yin, Y., Sun, L., Yang, L. and Zheng, Y. (2020) Fungal Keratitis: Pathogenesis, Diagnosis and Prevention. Microbial Pathogenesis, 138, Article 103802.
http://doi.org/10.1016/j.micpath.2019.103802
[7] Awad, R., Ghaith, A.A., Awad, K., Mamdouh Saad, M. and Elmassry, A.A. (2024) Fungal Keratitis: Diagnosis, Management, and Recent Advances. Clinical Ophthalmology, 18, 85-106.
http://doi.org/10.2147/opth.s447138
[8] Mascarenhas, M., Chaudhari, P. and Lewis, S.A. (2023) Natamycin Ocular Delivery: Challenges and Advancements in Ocular Therapeutics. Advances in Therapy, 40, 3332-3359.
http://doi.org/10.1007/s12325-023-02541-x
[9] Sahay, P., Singhal, D., Nagpal, R., Maharana, P.K., Farid, M., Gelman, R., Sinha, R., Agarwal, T., Titiyal, J.S. and Sharma, N. (2019) Pharmacologic Therapy of Mycotic Keratitis. Survey of Ophthalmology, 64, 380-400.
http://doi.org/10.1016/j.survophthal.2019.02.007
[10] Ong, H.S. and Corbett, M.C. (2015) Corneal Infections in the 21st Century. Postgraduate Medical Journal, 91, 565-571.
https://doi.org/10.1136/postgradmedj-2015-133323
[11] Montgomery, M.L. and Fuller, K.K. (2020) Experimental Models for Fungal Keratitis: An Overview of Principles and Protocols. Cells, 9, Article 1713.
http://doi.org/10.3390/cells9071713
[12] 王健, 孙瑜, 陈磊, 乔夕. 芒柄花素的现代研究进展[J]. 山西中医学院学报, 2017, 18(5): 74-76, 封3.
[13] Machado Dutra, J., Espitia, P.J.P. and Andrade Batista, R. (2021) Formononetin: Biological Effects and Uses—A Review. Food Chemistry, 359, Article 129975.
http://doi.org/10.1016/j.foodchem.2021.129975
[14] Xiang, K., Shen, P., Gao, Z., Liu, Z., Hu, X., Liu, B. and Fu, Y. (2022) Formononetin Protects LPS-Induced Mastitis through Suppressing Inflammation and Enhancing Blood-Milk Barrier Integrity via AhR-Induced Src Inactivation. Frontiers in Immunology, 13, Article 814319.
http://doi.org/10.3389/fimmu.2022.814319
[15] Ma, Z., Ji, W., Fu, Q. and Ma, S. (2013) Formononetin Inhibited the Inflammation of LPS-Induced Acute Lung Injury in Mice Associated with Induction of PPAR Gamma Expression. Inflammation, 36, 1560-1566.
http://doi.org/10.1007/s10753-013-9700-5
[16] Yu, B. and Li, C. (2022) Study on the Therapeutic Mechanism of Eugenol in Mouse Fungal Keratitis. Advances in Clinical Medicine, 12, 976-985.
http://doi.org/10.12677/ACM.2022.122142
[17] Abbondante, S., Leal, S.M., Clark, H.L., Ratitong, B., Sun, Y., Ma, L.J. and Pearlman, E. (2023) Immunity to Pathogenic Fungi in the Eye. Seminars in Immunology, 67, Article 101753.
http://doi.org/10.1016/j.smim.2023.101753
[18] Stapleton, F. (2023) The Epidemiology of Infectious Keratitis. The Ocular Surface, 28, 351-363.
http://doi.org/10.1016/j.jtos.2021.08.007
[19] Hoffman, J.J., Arunga, S., Mohamed Ahmed, A.H.A., Hu, V.H. and Burton, M.J. (2022) Management of Filamentous Fungal Keratitis: A Pragmatic Approach. Journal of Fungi, 8, Article 1067.
http://doi.org/10.3390/jof8101067
[20] Sharma, N., Bagga, B., Singhal, D., Nagpal, R., Kate, A., Saluja, G. and Maharana, P.K. (2022) Fungal Keratitis: A Review of Clinical Presentations, Treatment Strategies and Outcomes. The Ocular Surface, 24, 22-30.
http://doi.org/10.1016/j.jtos.2021.12.001
[21] Yang, R.B., Wu, L.P., Lu, X.X., Zhang, C., Liu, H., Huang, Y., Jia, Z., Gao, Y.C. and Zhao, S.Z. (2021) Immunologic Mechanism of Fungal Keratitis. International Journal of Ophthalmology, 14, 1100-1106.
http://doi.org/10.18240/ijo.2021.07.20
[22] Long-Sutehall, T., Bracher, M. and Madi-Segwagwe, B.C. (2022) 7 Current Practice of Healthcare Professionals in Hospice and Hospital Palliative Care Settings Related to Eye Donationas Part of End-of-Life Care: A National Survey. BMJ Open Ophthalmology, 7, A3.
http://doi.org/10.1136/bmjophth-2022-EEBA.7
[23] Hoffman, J.J., Burton, M.J. and Leck, A. (2021) Mycotic Keratitis—A Global Threat from the Filamentous Fungi. Journal of Fungi, 7, Article 273.
http://doi.org/10.3390/jof7040273
[24] Wei, Z.Y. and Liang, Q.F. (2020) [Progress of Clinical Diagnosis and Treatment in Fungal Keratitis]. Chinese Journal of Ophthalmology, 56, 631-636.
[25] Mills, B., Radhakrishnan, N., Karthikeyan Rajapandian, S.G., Rameshkumar, G., Lalitha, P. and Prajna, N.V. (2021) The Role of Fungi in Fungal Keratitis. Experimental Eye Research, 202, Article 108372.
http://doi.org/10.1016/j.exer.2020.108372
[26] Ratitong, B. and Pearlman, E. (2021) Pathogenic Aspergillus and Fusarium as Important Causes of Blinding Corneal Infections—The Role of Neutrophils in Fungal Killing, Tissue Damage and Cytokine Production. Current Opinion in Microbiology, 63, 195-203.
http://doi.org/10.1016/j.mib.2021.07.018
[27] Chi, M., Gu, L., Zhang, L., Lin, J., Xu, Q., Jiang, N., Wang, Y., Qi, Y., Diao, W., Yi, W., Zhao, G. and Li, C. (2023) Pentoxifylline Treats Aspergillus fumigatus Keratitis by Reducing Fungal Burden and Suppressing Corneal Inflammation. European Journal of Pharmacology, 945, Article 175607.
http://doi.org/10.1016/j.ejphar.2023.175607
[28] Xu, Q., Wang, Q., Hu, L.T., Lin, J., Jiang, N., Peng, X.D., Li, C. and Zhao, G.Q. (2022) NADPH Oxidase 2 Plays a Protective Role in Experimental Aspergillus fumigatus Keratitis in Mice through Killing Fungi and Limiting the Degree of Inflammation. International Journal of Ophthalmology, 15, 1044-1052.
http://doi.org/10.18240/ijo.2022.07.02
[29] Yin, M., Li, C., Zhang, L., Zhang, L., Lin, J., Jiang, N., Wang, Q., Xu, Q., Zheng, H., Gu, L., Jia, Y., Yu, B. and Zhao, G. (2022) Mechanism of Antifungal Activity and Therapeutic Action of β-Ionone on Aspergillus fumigatus Keratitis via Suppressing LOX1 and JNK/p38 MAPK Activation. International Immunopharmacology, 110, Article 108992.
http://doi.org/10.1016/j.intimp.2022.108992
[30] Kredics, L., Narendran, V., Shobana, C.S., Vágvölgyi, C. and Manikandan, P. (2015) Filamentous Fungal Infections of the Cornea: A Global Overview of Epidemiology and Drug Sensitivity. Mycoses, 58, 243-260.
http://doi.org/10.1111/myc.12306
[31] Liang, K., Ye, Y., Wang, Y., Zhang, J. and Li, C. (2014) Formononetin Mediates Neuroprotection against Cerebral Ischemia/Reperfusion in Rats via Downregulation of the Bax/Bcl-2 Ratio and Upregulation PI3K/Akt Signaling Pathway. Journal of the Neurological Sciences, 344, 100-104.
http://doi.org/10.1016/j.jns.2014.06.033
[32] Chen, X., Wu, R., Li, L., Zeng, Y., Chen, J., Wei, M., Feng, Y., Chen, G., Wang, Y., Lin, L., Luo, H., Chen, A., Zeng, Z., He, F., Bai, Y., Zhang, S., Han, Y., Wang, Z., Zhao, X., Xiao, W., Jiang, Y. and Gong, S. (2023) Pregnancy-Induced Changes to the Gut Microbiota Drive Macrophage Pyroptosis and Exacerbate Septic Inflammation. Immunity, 56, 336-352, E9.
http://doi.org/10.1016/j.immuni.2023.01.015
[33] Yang, J., Sha, X., Wu, D., Wu, B., Pan, X., Pan, L.L., Gu, Y. and Dong, X. (2023) Formononetin Alleviates Acute Pancreatitis by Reducing Oxidative Stress and Modulating Intestinal Barrier. Chinese Medicine, 18, Article No. 78.
http://doi.org/10.1186/s13020-023-00773-1
[34] El-Bakoush, A. and Olajide, O.A. (2018) Formononetin Inhibits Neuroinflammation and Increases Estrogen Receptor Beta (ERβ) Protein Expression in BV2 Microglia. International Immunopharmacology, 61, 325-337.
http://doi.org/10.1016/j.intimp.2018.06.016
[35] Zhou, Z. and Zhang, P. (2023) Formononetin Ameliorates the LPS-Induced Inflammatory Response and Apoptosis of Neuronal Cells via NF-κB/NLRP3 Signaling Pathway. Functional & Integrative Genomics, 23, Article No. 321.
http://doi.org/10.1007/s10142-023-01247-1