IL-6和D-二聚体与冠心病的研究进展
Research Progress of IL-6 and D-Dimer and Coronary Heart Disease
DOI: 10.12677/acm.2024.1441013, PDF, HTML, XML, 下载: 18  浏览: 42 
作者: 苏比依努尔·斯拉积丁, 谢 翔*:新疆医科大学第一附属医院高血压科,新疆 乌鲁木齐
关键词: 白细胞介素-6D-二聚体冠心病Interleukin-6 D-Dimer Coronary Heart Disease
摘要: 冠心病是心血管疾病中最常见的疾病,冠状动脉粥样硬化的开始和发展是一个复杂的过程,由血栓形成和炎症共同驱动。白细胞介素作为重要的炎症因子,在动脉粥样硬化的发生和发展过程中起到了重要作用,其中白细胞介素-6 (Interleukin 6, IL-6)是家族中的重要一员。D-二聚体(D-dimer, DD)是由纤维蛋白溶解系统对血栓的有序分解产物,是临床凝血和纤溶激活的重要检测指标,在血栓性疾病中具有重要的临床价值。本文对就与冠心病关系较为密切的IL-6和D-二聚体的研究进展进行综述。
Abstract: Coronary heart disease is the most common disease of cardiovascular disease, and the onset and progression of coronary atherosclerosis is a complex process, driven by both thrombosis and inflammation. As an important inflammatory factor, Interleukin plays an important role in the occurrence and development of atherosclerosis, and interleukin-6 (IL-6) is an important member of the family. D-dimer (DD) is the ordered breakdown product of thrombus by fibrinolytic system, which is an important indicator of clinical coagulation and fibrinolytic activation, and has important clinical value in thrombotic diseases. This article reviews the research progress of IL-6 and D-dimer which are closely related to coronary heart disease.
文章引用:苏比依努尔·斯拉积丁, 谢翔. IL-6和D-二聚体与冠心病的研究进展[J]. 临床医学进展, 2024, 14(4): 244-250. https://doi.org/10.12677/acm.2024.1441013

1. 引言

冠状动脉粥样硬化性心脏病(coronary heart disease,CHD)是冠状动脉血管发生粥样硬化性病变从而引起血管狭窄或阻塞,造成心肌缺血、缺氧或坏死而导致的心脏病,简称冠心病。冠心病发病是多种复杂因素造成的,包括血脂异常、炎症、高血压、糖尿病等 [1] [2] [3] [4] 。其中炎症反应和血脂异常在动脉粥样硬化的发生发展过程中起到了重要作用 [5] [6] 。IL-6是一种炎症细胞因子,主要由单核/巨噬细胞分泌,具有广泛的诱导炎症和调节免疫的功能,可通过复杂的细胞因子网络促进动脉粥样硬化的发生和发展。D-二聚体是最简单的纤维蛋白产物,其水平升高提示机体存在高凝状态和继发性的纤维蛋白溶解亢进,在心血管疾病的诊断、发展、不良事件预测中有重要价值。

2. IL-6与D-二聚体的特性

白细胞介素-6 (IL-6)是一种功能广泛的多效性前炎症细胞因子,有多种生物活性,以自分泌,旁分泌,内分泌3种形式对不同器官产生不同效应,包括介导炎症反应,免疫反应等。自1986年IL-6的分子克隆以来,目前已经发现多种其他细胞因子与IL-6相联系。IL-6亚家族成员包括:IL-6,LIF,OSM,CNTF,IL-11,CLC,IL-27等,在其受体复合物中共享相同的信号转导因子糖蛋白130 (glycoprotein 130, gp130) [7] 。IL-6通过gp130发挥功能,进而激活丝裂原活化蛋白激酶(mitogen-activatedprotein kinase, MAPK),启动酪氨酸激酶(janus tyrosine kinase, JAK)/信号转导及转录激活因子(signal transducer and activator of transcription, STAT)信号通路,促进炎症反应的发生 [8] 。

D-二聚体是在凝血酶及凝血因子Ⅻ作用下,交联纤维蛋白经过纤溶降解作用的终末产物。只在交联纤维蛋白的降解过程中产生,是特异性较高的继发性纤维蛋白溶解的特有代谢物 [9] [10] 。因此,D-二聚体是机体内存在血栓形成和纤溶系统激活的整体标记物,并可作为血栓活性的间接标记物,是诊断和预测血栓性和血管性疾病最广泛使用的生物标志物之一 [11] [12] [13] 。

3. IL-6与动脉粥样硬化

动脉粥样硬化病变主要表现为动脉血管内皮和平滑肌细胞受损,这种刺激会刺激内皮细胞活化,从而引发白细胞补充和局部炎症反应。IL-6作为炎症因子,参与了动脉粥样硬化的发生发展,且在其中起了重要的作用。Seino等人的研究支持了炎症与动脉粥样硬化之间存在关联的假说,他们观察到IL-6表达和动脉粥样硬化存在联系,且表达量高于正常组织10~40倍 [14] 。另外,在一项动物实验中,发现给喂食高脂肪饮食的ApoE-/-小鼠施用IL-6会加重动脉粥样硬化,使用抗小鼠IL-6受体抗体可以抑制STAT3激活和动脉粥样硬化病变进展 [15] 。

以上提示了IL-6与动脉粥样硬化存在着一定的关系,在过去的几十年里,人们对其潜在的机制进行了大量的研究。IL-6细胞因子及其信号通路已被证明通过多种机制促进动脉粥样硬化斑块的发展和斑块的不稳定。(1) IL-6是维持体内平衡的典型细胞因子,其具有分化和促进生长等多种生物学作用,参与调节机体的炎症及免疫反应等生物活动,还可以促进造血干细胞分化和巨核细胞成熟,从而导致血小板的释放 [16] ,可继续促进动脉粥样硬化的发生和发展。(2) IL-6不仅能促进纤维蛋白原的生成和血小板的释放,还能激活凝血系统,IL-6诱导单核细胞表面的组织因子(TF) [17] ,通过启动外源性凝血途径促进凝血,进而导致凝血酶的产生。从而形成机体高凝状态和血栓形成。(3) IL-6促进巨噬细胞表面表达低密度脂蛋白受体(low-density lipoprotein receptor, LDLR)的合成及巨噬细胞对低密度脂蛋白(low-density lipoprotein, LDL)的摄取,加速脂质的沉积,促进粥样斑块的形成 [18] 。(4) IL-6可以引起细胞黏附分子CD44在巨噬细胞中的高表达,正反馈促进巨噬细胞分泌IL-6,进一步加剧动脉粥样硬化的进展 [19] [20] 。(5) IL-6通过特定的信号传导途径,如激活核因子kB,进而影响炎症相关基因的表达,这一机制在冠状动脉粥样硬化的形成和进展中起到了核心作用 [21] 。(6) IL-6还可以诱导肝脏产生急性期蛋白,如C-反应蛋白和血浆蛋白原等,进一步促进心肌细胞表达黏附分子,参与炎症反应。(7) IL-6可由机体多种细胞产生和分泌,包括血管内皮细胞和平滑肌细胞,研究表明,当心肌缺氧时也可诱导血管内皮细胞的IL-6分泌增多 [22] 。

4. IL-6与冠心病

目前把冠心病分为两大类:急性冠脉综合征,慢性冠脉病。冠状动脉粥样硬化是冠心病的一个主要病因,IL-6的释放可能是冠心病患者冠状动脉病变局部炎性反应的激活和凝血异常的标志。急性冠脉综合征(acute coronary syndrome, ACS)的特点是血管发生急性狭窄、闭塞或功能异常(痉挛),导致心肌缺血缺氧性损伤,最终可能引发心肌梗死(myocardial infarction, MI),因此有研究提出在急性胸痛患者中,IL-6可能有助于排除患者短期不良心血管事件的风险 [23] 。并且研究发现IL-6能够调节冠状动脉性心脏病患者血管损伤及急性心肌缺血的炎症病理反应 [24] 。一项纳入了21,921例70岁以上的老年人的研究发现,IL-6可以预测心血管事件(心肌梗死、冠心病性猝死以及因心绞痛或冠状动脉血运重建住院)的发生,提示IL-6有利于老年人群的危险分层 [25] 。IL-6可能是冠状动脉斑块不稳定的信号,它通过对基质金属蛋白酶合成进行刺激,后者可以造成粥样斑块表面的纤维帽破坏,削弱抵抗应力的作用,从而导致斑块不稳定破裂 [26] 。Biasucci等人报道,入院时较高IL-6水平的不稳定型心绞痛患者,随着病情稳定48小时后IL-6逐渐下降,患者IL-6水平越高病情越可能复杂,这也表明IL-6的升高在提示斑块形成和不稳定性中有一定的作用 [27] 。Batra G等在慢性冠状动脉综合征患者中也发现较高水平的IL-6与慢性冠状动脉综合征患者MACE风险增加独立相关 [28] 。在首次行冠状动脉旁路移植术(CABG)的患者的预后中,入院时测量IL-6水平与术后并发症密切相关,并且影响住院期间的不良预后 [29] 。Ikeda U等报道IL-6在心绞痛之中显著提升,和经皮冠状动脉介入治疗(PCI)术后支架内再狭窄存在紧密联系,即IL-6表达和斑块不稳定存在联系,也和术后再狭窄存在联系 [30] 。在远期预后评估中发现血清IL-6水平与CHD患者2年内不良心血管事件的发生风险独立相关 [31] 。在这些疾病中,IL-6参与了炎症反应、动脉粥样硬化及血栓状态的调节,在心血管疾病的发展和预后中起重要作用。

5. D-二聚体与动脉粥样硬化性心血管病

冠心病的发生、发展还与体内凝血状态的改变密切相关,患者血管内皮细胞的完整性受到破坏,导致血栓形成和继发性纤溶。当内皮细胞受损伤时局部释放组织纤溶酶原激活物,激活血浆中的纤维酶原转化为纤溶酶,将纤维蛋白结合的交联纤维蛋白降解产生D-二聚体,而底物交联纤维蛋白的形成需要凝血酶以激活凝血,所以D-二聚体是凝血和纤溶系统激活的整体标记物,并可作为血栓活性的间接标记物 [11] [32] [33] [34] [35] 。临床上,D-二聚体常应用于诊断、评估血栓性疾病 [36] ,对于血栓事件有较高的预测价值。国外有学者指出,血浆D-二聚体水平与斑块侵蚀、破裂和坏死等相关 [37] 。近年来,越来越多的临床研究表明D-二聚体在冠心病的发病、不良事件预测中有重要价值。先前的研究表明,在没有确诊CHD的患者中,D-二聚体水平升高与发生CHD事件的风险相关 [4] 。另一项研究表明,患者D-二聚体水平越高,血液中出现血栓的风险越大,而血栓在冠心病患者的不良预后中,其还与冠心病患者心源性事件发生率有关 [38] 。这也说明了D-二聚体与冠心病的相关性。血管内成像研究的证据也表明,D二聚体水平与动脉粥样硬化斑块的脆弱性之间存在正相关 [39] [40] 。同时,血浆D-二聚体水平与冠状动脉局部不稳定斑块形成有关,国外有研究发现D-二聚体水平不仅在急性冠脉综合征患者升高,同时再发心肌梗死患者血浆D-二聚体也有显著升高,这表明D-二聚体是可以用于急性冠状动脉综合征患者严重程度的一项指标 [41] 。除此之外,D-二聚体水平在评估PCI患者死亡风险方面的研究也越来越多。一项研究表明 [42] ,D-二聚体水平可以独立预测STEMI患者经皮冠状动脉介入治疗后2~7天内出现无再流,对有症状的STEMI患者,2~7天内D-二聚体水平较低者PCI可能是安全可行的。在长期预后评估中发现,D-二聚体与急性冠脉综合征的远期预后有一定的相关性,高水平的D-二聚体可能是ACS的胸痛患者中全因死亡的独立的长期预测因素 [43] 。

6. IL-6与D-二聚体

炎症反应、纤溶-凝血系统失衡和血管内皮损伤在动脉粥样硬化发展中均具有重要作用。研究发现,炎症因子可直接损伤血管内皮细胞,损伤的内皮细胞释放大量组织因子并激活凝血系统,进一步产生大量促凝物质,进而使血小板聚集、纤维蛋白降解形成D-二聚体,最终导致血栓的形成。此外,在国内外其他相关研究中,提示D-二聚体同样也可以起到对单核细胞释放IL-6的促进作用 [44] [45] 。

凝血系统中的D‐二聚体可作为促炎症介质,刺激单核细胞、内皮细胞产生较多的炎症介质,进一步扩大炎症反应,促进动脉粥样硬化的进展,说明炎症和血栓是相互活化的,共同导致心血管事件的发生 [46] 。不一样的血清标志物,会伴随CHD不同病理过程而产生。IL-6是重要的炎症因子,而斑块破裂的重要机制、及血栓形成的重要原因,均由炎症反应引发。所以,它既可判断、缺血心肌的严重程度,又能预估、心脏事件发生的危险性。D-二聚体作为分子标记物,可用于检测冠心病患者的纤溶系统,发现血栓形成,在冠心病的诊断及病情判断方面,D-二聚体参考价值非常重要 [47] 。二者的联合检查,可反应出冠心病患者病理阶段的不同,对其早诊断、及时评估病情及预后意义重大。

7. 小结与展望

冠心病作为临床常见的心血管系统疾病,至今给人类的生命健康和生活带来的危害较大。其中,炎症和血栓成为冠心病启动和发展的重要关键点。IL-6和D-二聚体具有价格低廉、易获得、可重复检测等特点,因此,通过检测血浆中IL-6及D-二聚体,一方面有助于冠心病的早期诊断,危险分层及预后预测,另一方面可以为冠心病的治疗方案提供帮助。随着人们对多项指标与冠心病关系研究进一步深入,炎症因子及D-二聚体的联合检测有助于冠心病的早期发现高危斑块,尽早预防,改善预后提供新的思路和新的治疗前景。目前研究还处于早期阶段,能否在长期预防血栓治疗的基础上通过改善炎症反应为冠心病临床治疗和药物研发提供依据。以此寻找更精确的冠心病治疗的新靶点,并证明其有效性,成为该领域今后的研究方向。

NOTES

*通讯作者。

参考文献

[1] Lewington, S., Clarke, R., Qizilbash, N., et al., Prospective Studies Collaboration (2002) Age-Specific Relevance of Usual Blood Pressure to Vascular Mortality: A Meta-Analysis of Individual Data for One Million Adults in 61 Prospective Studies. The Lancet, 360, 1903-1913.
https://doi.org/10.1016/S0140-6736(02)11911-8
[2] Leon, B.M. and Maddox, T.M. (2015) Diabetes and Cardiovascular Disease: Epidemiology, Biological Mechanisms, Treatment Recommendations and Future Research. World Journal of Diabetes, 6, 1246-1258.
https://doi.org/10.4239/wjd.v6.i13.1246
[3] Jung, E., Kong, S.Y., Ro, Y.S., et al. (2022) Serum Cholesterol Levels and Risk of Cardiovascular Death: A Systematic Review and a Dose-Response Meta-Analysis of Prospective Cohort Studies. International Journal of Environmental Research and Public Health, 19, Article 8272.
https://doi.org/10.3390/ijerph19148272
[4] Tavakoly, A.A., Sany, S.B., Ghayour-Mobarhan, M., et al. (2018) Serum C-Reactive Protein in the Prediction of Cardiovascular Diseases: Overview of the Latest Clinical Studies and Public Health Practice. Journal of Cellular Physiology, 233, 8508-8525.
https://doi.org/10.1002/jcp.26791
[5] 刘俊田. 动脉粥样硬化发病的炎症机制的研究进展[J]. 西安交通大学学报(医学版), 2015(2): 141-152.
[6] Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533.
https://doi.org/10.1038/s41586-021-03392-8
[7] Ray, A., Tatter, S.B., Santhanam, U., et al. (1989) Regulation of Expression of Interleukin-6. Molecular and Clinical Studies. Annals of the New York Academy of Sciences, 557, 353-362.
https://doi.org/10.1111/j.1749-6632.1989.tb24028.x
[8] Lesina, M., Wörmann, S.M., Neuhöfer, P., et al. (2014) Interleukin-6 in Inflammatory and Malignant Diseases of the Pancreas. Seminars in Immunology, 26, 80-87.
https://doi.org/10.1016/j.smim.2014.01.002
[9] Tripodi, A. (2011) D-Dimer Testing in Laboratory Practice. Clinical Chemistry, 57, 1256-1262.
https://doi.org/10.1373/clinchem.2011.166249
[10] Johnson, E.D., Schell, J.C. and Rodgers, G.M. (2019) The D-Dimer Assay. American Journal of Hematology, 94, 833-839.
https://doi.org/10.1002/ajh.25482
[11] Weitz, J.I., Fredenburgh, J.C. and Eikelboom, J.W. (2017) A Test in Context: D-Dimer. Journal of the American College of Cardiology, 70, 2411-2420.
https://doi.org/10.1016/j.jacc.2017.09.024
[12] Simes, J., Robledo, K.P., White, H.D., et al. (2018) D-Dimer Predicts Long-Term Cause-Specific Mortality, Cardiovascular Events, and Cancer in Patients with Stable Coronary Heart Disease. Circulation, 138, 712-723.
https://doi.org/10.1161/CIRCULATIONAHA.117.029901
[13] Kyrle, P.A. and Eichinger, S. (2018) D-Dimer for Long-Term Risk Prediction in Patients after Acute Coronary Syndrome. Circulation, 138, 724-726.
https://doi.org/10.1161/CIRCULATIONAHA.118.033670
[14] Seino, Y., Ikeda, U., Ikeda, M., et al. (1994) Interleukin 6 Gene Transcripts Are Expressed in Human Atherosclerotic Lesions. Cytokine, 6, 87-91.
https://doi.org/10.1016/1043-4666(94)90013-2
[15] Recinos, A., LeJeune, W.S., Sun, H., et al. (2007) Angiotensin II Induces IL-6 Expression and the Jak-STAT3 Pathway in Aortic Adventitia of LDL Receptor-Deficient Mice. Atherosclerosis, 194, 125-133.
https://doi.org/10.1016/j.atherosclerosis.2006.10.013
[16] Ishibashi, T., Kimura, H., Shikama, Y., et al. (1989) Interleukin-6 Is a Potent Thrombopoietic Factor in Vivo in Mice. Blood, 74, 1241-1244.
https://doi.org/10.1182/blood.V74.4.1241.1241
[17] Neumann, F.J., Ott, I., Marx, N., et al. (1997) Effect of Human Recombinant Interleukin-6 and Interleukin-8 on Monocyte Procoagulant Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 3399-3405.
https://doi.org/10.1161/01.ATV.17.12.3399
[18] Schuett, H., Luchtefeld, M., Grothusen, C., et al. (2009) How Much Is Too Much? Interleukin-6 and Its Signalling in Atherosclerosis. Thrombosis and Haemostasis, 102, 215-222.
https://doi.org/10.1160/TH09-05-0297
[19] Hägg, D., Sjöberg, S., Hultén, L.M., et al. (2007) Augmented Levels of CD44 in Macrophages from Atherosclerotic Subjects: A Possible IL-6-CD44 Feedback Loop? Atherosclerosis, 190, 291-297.
https://doi.org/10.1016/j.atherosclerosis.2006.03.020
[20] Krettek, A., Sukhova, G.K., Schönbeck, U., et al. (2004) Enhanced Expression of CD44 Variants in Human Atheroma and Abdominal Aortic Aneurysm: Possible Role for a Feedback Loop in Endothelial Cells. The American Journal of Pathology, 165, 1571-1581.
https://doi.org/10.1016/S0002-9440(10)63414-1
[21] Ikeda, U., Ito, T. and Shimada, K. (2001) Interleukin-6 and Acute Coronary Syndrome. Clinical Cardiology, 24, 701-704.
https://doi.org/10.1002/clc.4960241103
[22] Yamauchi-Takihara, K., Ihara, Y., Ogata, A., et al. (1995) Hypoxic Stress Induces Cardiac Myocyte-Derived Interleukin-6. Circulation, 91, 1520-1524.
https://doi.org/10.1161/01.CIR.91.5.1520
[23] Lee, K.W., Lip, G.Y., Tayebjee, M., et al. (2005) Circulating Endothelial Cells, Von Willebrand Factor, Interleukin-6, and Prognosis in Patients with Acute Coronary Syndromes. Blood, 105, 526-532.
https://doi.org/10.1182/blood-2004-03-1106
[24] Reichert, S., Schlitt, A., Benten, A.C., et al. (2016) Data on IL-6 c.-174 G>C Genotype and Allele Frequencies in Patients with Coronary Heart Disease in Dependence of Cardiovascular Outcome. Data in Brief, 8, 1295-1299.
https://doi.org/10.1016/j.dib.2016.07.020
[25] Rodondi, N., Marques-Vidal, P., Butler, J., et al. (2010) Markers of Atherosclerosis and Inflammation for Prediction of Coronary Heart Disease in Older Adults. American Journal of Epidemiology, 171, 540-549.
https://doi.org/10.1093/aje/kwp428
[26] 刘晓柳, 李光千. 白介素-6及其受体与心血管系统的研究进展[J]. 细胞与分子免疫学杂志, 2009, 25(2): 189-191.
[27] Biasucci, L.M., Vitelli, A., Liuzzo, G., et al. (1996) Elevated Levels of Interleukin-6 in Unstable Angina. Circulation, 94, 874-877.
https://doi.org/10.1161/01.CIR.94.5.874
[28] Batra, G., Lakic, T.G., Lindbäck, J., et al. (2021) Interleukin 6 and Cardiovascular Outcomes in Patients with Chronic Kidney Disease and Chronic Coronary Syndrome. JAMA Cardiology, 6, 1440-1445.
https://doi.org/10.1001/jamacardio.2021.3079
[29] Sanders, J., Hawe, E., Brull, D.J., et al. (2009) Higher IL-6 Levels but not IL6-174G>C or-572G>C Genotype Are Associated with Post-Operative Complication Following Coronary Artery Bypass Graft (CABG) Surgery. Atherosclerosis, 204, 196-201.
https://doi.org/10.1016/j.atherosclerosis.2008.08.032
[30] Ikeda, U. (2003) Inflammation and Coronary Artery Disease. Current Vascular Pharmacology, 1, 65-70.
https://doi.org/10.2174/1570161033386727
[31] 林小梅, 祖姆热提∙阿布都克依木, 马春晖, 等. 血清白介素6、空腹血糖水平与冠心病及不良心血管事件关系的研究[J]. 中国全科医学, 2024, 27(3): 286-292.
[32] Adam, S.S., Key, N.S. and Greenberg, C.S. (2009) D-Dimer Antigen: Current Concepts and Future Prospects. Blood, 113, 2878-2887.
https://doi.org/10.1182/blood-2008-06-165845
[33] Hoeprich Jr., P.D. and Doolittle, R.F. (1983) Dimeric Half-Molecules of Human Fibrinogen Are Joined through Disulfide Bonds in an Antiparallel Orientation. Biochemistry, 22, 2049-2055.
https://doi.org/10.1021/bi00278a003
[34] Mosesson, M.W., Siebenlist, K.R., Hainfeld, J.F., et al. (1995) The Covalent Structure of Factor XIIIa Crosslinked Fibrinogen Fibril. Journal of Structural Biology, 115, 88-101.
https://doi.org/10.1006/jsbi.1995.1033
[35] Longstaff, C. and Kolev, K. (2015) Basic Mechanisms and Regulation of Fibrinolysis. Journal of Thrombosis and Haemostasis, 13, S98-S105.
https://doi.org/10.1111/jth.12935
[36] 庄德荣, 何胜虎, 蔡定华, 等. hs-CRP、D-二聚体和Lp-PLA2与冠心病患者冠状动脉粥样硬化易损斑块的相关性[J]. 现代生物医学进展, 2017, 17(26): 5131-5133.
[37] Kothari, H., Nguyen, A.T., Yang, X., et al. (2018) Association of D-Dimer with Plaque Characteristics and Plasma Biomarkers of Oxidation-Specific Epitopes in Stable Subjects with Coronary Artery Disease. Journal of Cardiovascular Translational Research, 11, 221-229.
https://doi.org/10.1007/s12265-018-9790-4
[38] Soomro, A.Y., Guerchicoff, A., Nichols, D.J., et al. (2016) The Current Role and Future Prospects of D-Dimer Biomarker. European Heart Journal-Cardiovascular Pharmacotherapy, 2, 175-184.
https://doi.org/10.1093/ehjcvp/pvv039
[39] 任爱平, 杨叶, 叶阳. 不稳定型心绞痛患者凝血纤溶指标的变化[J]. 西部医学, 2007, 19(5): 791-792.
[40] Tokita, Y., Kusama, Y., Kodani, E., et al. (2009) Utility of Rapid D-Dimer Measurement for Screening of Acute Cardiovascular Disease in the Emergency Setting. Journal of Cardiology, 53, 334-340.
https://doi.org/10.1016/j.jjcc.2008.12.001
[41] Patil, S.M., Bankar, M.P., Padalkar, R.K., et al. (2014) Study of Plasma Fibrin D-Dimer as Marker of Fibrinolysis and High Sensitive C-Reactive Protein (hs-CRP) as Potential Inflammatory Marker in Acute Stage of Coronary Heart Diseases. Journal of Indian College of Cardiology, 4, 8-13.
https://doi.org/10.1016/j.jicc.2014.01.005
[42] Gong, X., Lei, X., Huang, Z., et al. (2021) D-Dimer Level Predicts Angiographic No-Reflow Phenomenon after Percutaneous Coronary Intervention within 2-7 Days of Symptom Onset in Patients with ST-Segment Elevation Myocardial Infarction. Journal of Cardiovascular Translational Research, 14, 728-734.
https://doi.org/10.1007/s12265-020-09991-6
[43] Mjelva, Ø.R., Pönitz, V., Brügger-Andersen, T., et al. (2016) Long-Term Prognostic Utility of Pentraxin 3 and D-Dimer as Compared to High-Sensitivity C-Reactive Protein and B-Type Natriuretic Peptide in Suspected Acute Coronary Syndrome. European Journal of Preventive Cardiology, 23, 1130-1140.
https://doi.org/10.1177/2047487315619733
[44] 何东明. 血清高敏C反应蛋白和白细胞介素-6水平对冠心病病情评估的价值[J]. 中华实用诊断与治疗杂志, 2012, 26(2): 135-136, 140.
[45] Frossard, J.L., Steer, M.L. and Pastor, C.M. (2008) Acute Pancreatitis. The Lancet, 371, 143-152.
https://doi.org/10.1016/S0140-6736(08)60107-5
[46] Ghanavatian, S., Stein, R.A., Atar, D., et al. (2011) The Course of D-Dimer, High-Sensitivity C-Reactive Protein and Pro-B-Type Natriuretic Peptide in Patients with Non-ST-Elevation Myocardial Infarction. Clinical Laboratory, 57, 771-776.
[47] 王蓉, 胡东南. D-二聚体和纤维蛋白原的检测在不同类型冠心病诊断中的意义[J]. 中国医药导报, 2006, 3(35): 158 162.