动脉瘤性蛛网膜下腔出血致认知障碍的研究进展
Research Progress on Cognitive Impairment Caused by Aneurysmal Subarachnoid Hemorrhage
DOI: 10.12677/acm.2024.144998, PDF, HTML, XML, 下载: 37  浏览: 69 
作者: 程 鹏, 范国锋, 杜郭佳*:新疆医科大学第一附属医院神经外科,新疆 乌鲁木齐
关键词: 颅内动脉瘤蛛网膜下腔出血认知障碍Intracranial Aneurysm Subarachnoid Hemorrhage Cognitive Impairment
摘要: 动脉瘤性蛛网膜下腔出血(aSAH)除高致死率及高致残率外,还会造成难以识别和量化的认知障碍。早期使用神经心理学量表对认知功能进行评估至关重要;与功能结果的预测因素相比,缺乏有临床意义的认知障碍的预测因素。本文查阅近年来国内外关于aSAH后认知障碍的文献并进行综述,以期为临床治疗决策提供参考依据。
Abstract: In addition to its high mortality and disability rates, aneurysmal subarachnoid hemorrhage (aSAH) causes cognitive impairment that is difficult to recognize and quantify. Early use of neuropsychological scales to assess cognitive function is essential; Clinically meaningful predictors of cognitive impairment are lacking compared to predictors of functional outcomes. This article reviews the literature on cognitive impairment after aSAH at home and abroad in recent years and reviews them, hoping to provide a reference for clinical treatment decisions.
文章引用:程鹏, 范国锋, 杜郭佳. 动脉瘤性蛛网膜下腔出血致认知障碍的研究进展[J]. 临床医学进展, 2024, 14(4): 126-136. https://doi.org/10.12677/acm.2024.144998

1. 引言

动脉瘤性蛛网膜下腔出血(Aneurysmal Subarachnoid Hemorrhage, aSAH)占脑卒中的5% [1] ,占所有蛛网膜下腔出血的80% [2] ,50岁及以上是其发病高峰 [3] ,尽管经过积极手术治疗转归良好的病人,仍有40%~70%存在不同程度的认知功能损害。据统计,回归社会的aSAH术后患者仍有44%存在认知功能损害,严重影响患者术后的生活质量,增加了社会负担 [4] [5] [6] 。aSAH后患者认知功能损害逐渐被国内外临床医生重视。现围绕aSAH致认知功能损害的研究进展作一综述,以期为aSAH患者治疗决策提供参考依据。

2. aSAH患者认知功能损害的相关预测因素

蛛网膜下腔出血后的神经损伤可分为两个阶段——早期脑损伤阶段(Early Brain Injury, EBI),发生在72小时以内;和延迟神经功能恶化阶段(Delayed Neurological Deterioration, DND),发生在动脉瘤破裂后3~14天 [7] 。研究显示与EBI相关的因素有:出血的位置和严重程度、脑水肿、脑积水、局灶性神经功能缺损或梗死的存在以及意识水平 [8] 。Hunt-Hess量表(Hunt-Hess Scale, HHS)、改良Fisher量表(Modified Fisher Scale, MFS)、Glasgow昏迷评分量表(Glasgow Coma Scale, GCS)和mRS评分已被用作aSAH严重程度的替代标志 [8] [9] ,可反应患者早期脑损伤的情况。Hunt-Hess分级和GCS评分根据患者出现时的体征和症状来评估脑损伤程度,是使用最广泛的临床量表 [10] 。MFS基于CT扫描中蛛网膜下腔出血的厚度和位置来预测脑血管痉挛(Cerebral Vasospasm, CVS)和DND的程度 [11] [12] 。近年研究表明,aSAH后认知损害与早期脑损伤情况、aSAH并发症以及手术方式等因素相关,是多因素共同作用结果。

2.1. 早期脑损伤情况

虽然Hunt-Hess、MFS和GCS是广泛使用的临床量表,根据患者出现时的体征和症状来评估早期脑损伤程度;但其中只有MFS评分进行多因素logistic回归分析后发现其是认知功能损害的独立预测因子;入院时较高的MFS评分,表明患者发生认知功能损害的风险更高 [13] [14] 。

2.2. aSAH并发症

Bonares [15] 等对8项研究,共281名未破裂动脉瘤(Unruptured Intracranial Aneurysm, UIA)术后患者进行Meta分析得出UIA术后一般无整体认知功能损害(effect size [ES] −0.22 [95% CI −0.78~0.34]);从此处可初步猜想蛛网膜下腔出血所导致的一系列并发症是aSAH患者发生认知功能损害的关键所在。

2.2.1. 延迟神经功能恶化(DND)与脑血管痉挛(Cerebral Vasospasm, CVS)

大多数aSAH的研究都集中在CVS的作用及其对神经功能障碍的影响上,70%的患者会发生CVS [16] 。但有几项研究的结果表明,单独的CVS并不是导致慢性损伤的唯一或主要因素 [7] 。DND被定义为出现延迟性局灶性神经功能缺损或意识水平下降,GCS持续下降2分,伴有或不伴有CVS;最近,DND已成为长期功能结果的主要驱动因素 [17] 。DND是一种与CVS有关但不同的现象,发生率高达30%,并表现为局灶性神经功能缺损,可能进一步发展为梗死 [18] 。所以DND被定义为aSAH后晚期神经功能恶化,但不需要存在CVS。尽管已知CVS与功能结果有关,但CVS和DND之间导致认知不良的关系尚不清楚。Geraghty等 [13] 对105例aSAH患者进行研究显示:CVS的发展对认知结果没有影响;单因素分析显示,DND与认知功能损害有关,然而,当进行多因素logistic回归分析时,发现DND没有达到统计显著性的水平。尽管Geraghty等人的研究无法将DND确定为认知结果的独立预测因素,但如果对更大的患者群体进行更多的前瞻性研究,可能会更清楚地揭示DND与认知结果的关系。

2.2.2. 迟发性脑缺血(Delayed Cerebral Ischemia, DCI)

迟发性脑缺血(DCI)也可能在aSAH后4天或更晚发生。DCI是aSAH的特征;DCI的机制是复杂的,并不仅仅与出血积聚量有关。研究表明,aSAH发作时的脑水肿与DCI有关,并反映了微循环变化,这被假设会增加DCI的风险 [19] ;其发生认为是由血液分解产物和炎症反应发展而来,或继发于早期脑损伤,即在aSAH的前72小时内发生在大脑中的急性病理生理事件 [20] ,DCI可能是CVS的结果,可能表现为局灶性神经功能缺损和/或GCS评分的恶化 [21] 。Stienen [22] 等对92例aSAH患者进行的研究显示:从单变量的角度来看,存在DCI的患者在aSAH后患中度至重度认知功能损害的可能性是其他患者的6.38倍。在校正入院Fisher分级、患者年龄、脑积水和其他潜在混杂因素后仍具有统计学意义。在分析的所有因素中,DCI是多变量分析中认知功能损害的最强预测因子。Stienen [23] 又在一项前瞻性研究中发现:存在DCI的aSAH患者的MoCA评分在aSAH后14天以及3个月较不存在DCI的aSAH患者更低;在aSAH后14天,DCI患者的MoCA评分更有可能下降 ≥ 2分(调整后OR 3.02)。Shen [24] 等人在对152名接受血管内介入治疗的aSAH患者进行的研究表明:DCI是aSAH后认知障碍的独立预测因素(OR, 6.153)。

2.2.3. 脑积水

脑积水被描述为主要与记忆和注意力缺陷有关 [25] ,在Shen [24] 等人的研究中,发现脑积水是aSAH后6个月出现认知功能障碍的重要危险因素。然而,在颅内动脉瘤血管内介入治疗后进行腰大池引流并不能改善认知功能。与Bakar [26] 的研究一致,发现即使在通过分流或脑室造瘘成功治疗脑积水后,仍存在持续的慢性认知障碍。这可能是因为分流功能不理想和/或由于最初的损伤导致功能性脑实质进一步减少 [27] 。aSAH后所发生的分流依赖性脑积水(Shunt-Dependent Hydrocephalus, SDHC)是需要永久分流改道的症状性脑室扩张。尽管有几项研究调查了SDHC的预测因素,但涉及因素众多,以及SDHC的患病率和患者的临床结局,目前尚存在争议。Paolo [28] 等人对23项研究,涉及22,264名患者进行分析。其中SDHC的总体患病率为22.3%,其预测指标包括高Hunt-Hess分级(HHS 3~5: OR 3.3; HHS 4~5: OR 3.2),高Fisher分级(OR 3.1),脑室出血(OR 3.1),脑血管痉挛(OR 1.9),脑实质内出血(OR 1.8),女性(OR 1.3)和后循环动脉瘤(OR 1.4)。颅内动脉瘤手术的方式不影响永久性分流的速率。即使分流和非分流患者的死亡率相似,SDHC患者更可能与不良的临床结局(mRS 3~6) (OR 4.3)相关。

2.3. 手术方式

aSAH的外科治疗在临床实践中得到了广泛应用。开颅夹闭术(surgical clipping, SC)可以有效降低患者的颅内压,在直视下有效清除血肿,打开蛛网膜下腔,释放脑脊液,防止脑脊液滞留,促进循环。然而,研究表明,这种手术对患者的影响很大,容易引起各种并发症,不利于后期恢复 [29] 。从历史上看,开颅夹闭术是治疗aSAH最常见的治疗方式,即使介入栓塞术(Endovascular Coiling, EC)自20世纪90年代被引入以来,普及程度逐渐变广 [30] ,这主要基于国际蛛网膜下腔动脉瘤试验 [31] ,该试验表明,通过EC治疗的患者对比SC在术后1年的相对风险降低24%。一个重要的问题是,两种治疗方法后的认知结果是否不同。

Egeto [32] 等对13项研究涉及396例SC病例、314例EC病例进行Meta分析发现:接受EC治疗的患者在执行功能和言语功能上优于接受SC治疗的患者,对于注意力、智力、空间记忆、言语记忆、视觉记忆及视空间能力等方面二者未发现有明显差别。俞学斌 [33] 等对122例aSAH术后患者进行研究后发现:在术后早期(术后2周)、中期(术后2个月) EC组患者认知功能损害发生率明显低于SC组患者,然而EC组与SC组的远期认知功能损害发生率的区别没有统计学意义。Frazer [34] 等在一项随访长达6个月的纵向研究中发现:接受SC治疗患者在执行能力、视空间能力方面优于接受EC治疗患者,在智力方面更是显著优于接受EC治疗患者;对于注意力、言语记忆、视觉记忆及言语能力等方面二者未发现有明显差别。

Bonares [15] 等纳入8项研究,共281名UIA患者进行Meta分析,结果提示:执行能力和言语记忆较治疗后差,视觉记忆任务的表现较治疗后好转。最后,治疗没有显著影响视觉空间功能。可认为治疗措施本身对患者认知功能损害无影响,引起认知功能损害的根本因素在于aSAH后的早期脑损伤以及其并发症。

对于aSAH患者EC术后认知功能损害较SC术后认知功能损害轻的原因可能和SC术中对脑组织的牵拉、对部分穿支血管造成损伤、术中载瘤动脉临时阻断时长等因素有关 [13] [33] [35] 。

3. 动脉瘤性蛛网膜下腔出血患者认知功能损害的发生机制

3.1. 神经炎症与认知功能损害

颅内动脉瘤破裂开始时血液沉积在蛛网膜下腔内,随后沉积的红细胞分解产生的血红蛋白、血红素和血红素可激活TLR4,TLR4是损伤神经元和白质的炎症级联反应的信号 [36] 。当血液离开血管系统同时,中枢神经系统内的免疫细胞(如小胶质细胞)会被激活。这些细胞触发内皮细胞内大量细胞粘附分子的上调,从而使大量炎症细胞结合并进入蛛网膜下腔 [37] 。炎症细胞(如巨噬细胞和中性粒细胞)一旦进入蛛网膜下腔,就会吞噬渗出的、降解的红细胞 [36] 。这个过程是为了清除游离血红蛋白,促进神经稳定和恢复。其中IL是一类多功能细胞因子,包括IL-1β、IL6、IL-7、IL-8、IL-10、IL-16和IL-1α。它参与信息传递和免疫调节,并在炎症反应中发挥重要作用 [38] 。Chen [39] 等人发现:脑卒中后痴呆患者与非痴呆患者的几种细胞因子表达不同。Kulesh [40] 等人发现:执行功能障碍患者的血清IL-6水平以及脑脊液中IL-1β和IL-10的水平显著高于无认知障碍患者;此外还发现血清中IL-1α和IL-6的表达与简易精神状态量表(Mini-Mental State Examination, MMSE)评分之间也存在显著相关性。血清IL-10的表达与MMSE评分(P < 0.001)、蒙特利尔认知评估量表(Montreal Cognitive Assessment, MoCA)评分(P = 0.01)相关。Guo [41] 等人发现:C反应蛋白(C Reactive Protein, CRP)水平升高可能通过两种不同的机制导致认知障碍;可见C反应蛋白(C Reactive Protein, CRP)水平升高与脑血管疾病以及认知功能损害的风险增加有关。首先,血管内皮功能受损,血管平滑肌细胞发生异常迁移和增殖,这是由于巨噬细胞摄取低密度脂蛋白从而促进泡沫细胞形成所致,从而诱发脑损伤,破坏了皮质前回路的完整性,导致认知障碍。其次,补体系统可能被激活,反过来可导致脑组织损伤和认知功能下降。

3.2. 轴突破坏与认知功能损害

Tau蛋白是一种微管相关蛋白,组装分子量为48~67 kDa的轴突束,通常仅限于脑细胞内 [42] 。aSAH可能导致轴突完整性的破坏,导致细胞内蛋白(如Tau蛋白)释放到脑细胞外。Tau蛋白被切割成17 kDa和50 kDa多肽,扩散到脑脊液中,并根据血脑屏障的完整性以可变的量进入血液 [43] 。Helbok [44] 等人从22名连续接受多模式神经监测的aSAH患者中收集脑微透析(Cerebral Microdialysis, CMD)样本,通过ELISA法测定CMD中总tau含量,发现CMD中较高的总tau水平与MMSE < 24相关,即使调整了其他变量后这种关联仍存在。这表明CMD中总tau可能是预测严重aSAH患者长期认知功能的重要生物标志物。轴突损伤与认知功能损害的关系需要在更进一步的研究中确认。

3.3. 神经胶质细胞与认知功能损害

小胶质细胞通常处于静息状态(M0)。但在激活后,它们被转化为具有不同生理功能的两种表型(M1和M2) [45] 。M1表型的小胶质细胞是促炎性的,因为它们分泌炎症分子,包括IL-1β、IL-6和TNF-α,这些分子对脑组织非常有害 [46] 。与M1表型相反,M2小胶质细胞由于其抗炎特性,被认为通过促进神经形成、轴突再生、血管生成和髓鞘再形成具有神经保护作用 [47] 。Xu等人 [48] 通过激活黑素皮质素1受体(Melanocortin 1 Receptor, MC1R)发现其减少了aSAH大鼠模型中促炎分子,促进小胶质细胞向M2表型的转化,从而缓解了aSAH大鼠模型中的认知功能损害。这证明aSAH后小胶质细胞活化为M1表型导致认知功能损害。此外Tao等人 [49] 在动物实验中发现星形胶质细胞中谷氨酸转运体1 (Glutamate Transporter 1, GLT-1)介导的谷氨酸摄取功能障碍可能与aSAH后的认知功能损害有关。此外,aSAH后星形胶质细胞中组蛋白脱乙酰酶2 (Histone Deacetylase 2, HDAC2)的表达增加,HDAC2对GLT-1的转录抑制是aSAH后星形胶质细胞GLT-1下调的遗传学机制。

3.4. 神经元自噬和认知功能损害

自噬对于维持细胞质稳态和应对损伤后细胞存活十分重要 [50] 。神经元自噬可能是由脑缺血、颅内压升高和aSAH后毒性分解物引起 [51] 。近年来,自噬引起了越来越多的关注,因为它是所有真核细胞中过量或异常的蛋白质和受损的细胞器被溶酶体降解的一种保护机制。最近的研究表明,自噬被激活,可能对各种脑损伤起到保护机制的作用 [52] 。Lee等人 [53] 在aSAH大鼠模型中,发现aSAH后自噬持续存在,并在出血后24小时达到峰值。Wang等人 [54] 发现,在aSAH大鼠模型中,自噬激活剂雷帕霉素可以减轻aSAH后早期脑损伤。Sun等人 [55] 发现在aSAH大鼠模型中,通过使用法舒地尔促进大鼠海马自噬增加,从而大鼠学习记忆能力增强。基于上述动物实验可知,aSAH后神经元受损,神经元自噬的增加负责消除受损的细胞成分和促进细胞修复以保护受伤的海马体,从而提高学习记忆能力。

3.5. 铁过载和认知功能损害

aSAH后会释放出大量的铁离子。铁对大脑的损伤可能由以下机制引起 [56] :① 氧化应激是由大脑中的铁离子引起的。这种应激可能通过影响水通道蛋白4 (Aquaporin 4, AQP4)的表达而加重脑水肿,而脑水肿又是致使病情恶化的原因之一。② 大脑中铁蛋白代谢的异常会导致大脑损伤。凝血酶诱导的转铁蛋白受体水平升高可导致细胞内铁摄取和细胞毒性增加,导致脑水肿、DNA损伤和细胞内铁积聚。Qin等人 [57] 在尼莫地平与去铁胺(Deferoxamine, DFX)对aSAH大鼠脑损伤影响比较中发现,尼莫地平可以有效缓解aSAH后的CVS,但不能改善随后的脑萎缩、认知障碍和神经细胞减少。DFX在aSAH急性期不能逆转CVS,但能有效减少大脑中铁的沉积,改善认知障碍、脑萎缩和神经元损失。

4. 认知功能损害筛查

aSAH后认知功能损害,即使是轻微的认知功能损害,在40%~70%的aSAH幸存者中普遍存在 [5] ,需要对aSAH患者长期认知功能进行决定性测评,由此可见选择合适的认知功能评估量表尤为重要。蒙特利尔认知评估量表(MoCA)和简易精神状态量表(MMSE)最常用于评估aSAH患者的认知功能水平 [58] 。此外还有Barthel指数(Barthel Index, BI)、韦氏记忆量表、韦氏智力量表、SF-36、改良Rankin量表(mRS)、Halstead-Reitan神经心理学量表以及改良格拉斯哥预后评分(modified Glasgow Prognostic Score, mGPS)等。

MMSE量表测试内容包括定向力(时间定向与空间定向)、瞬时记忆、注意力和计算力、延迟记忆及言语等方面,满分30分,低于27分则可诊断为认知功能障碍。在以往的认知功能损害的检查和评估中普遍使用,长时间临床应用中发现很多患者达到认知功能损害的诊断标准,但MMSE评分在27分以上,导致出现漏诊现象 [59] 。

MoCA量表测试内容在MMSE量表基础上加入了视空间及抽象概念等测试内容,满分30分,低于26分则可诊断为认知功能障碍。MoCA和MMSE对认知障碍的诊断准确率在80%~92%之间,MoCA (100%)与MMSE (58%)相比具有更高的灵敏度 [59] ,但其特异性较低。然而,在aSAH恢复期间,MoCA已被证明在评估患者预后方面优于MMSE [60] 。成明强等 [61] 对65例卒中后患者的认知水平采用了MoCA和MMSE两评分量表进行比较,发现MoCA对于诊断血管性认知功能损害敏感性更高,并且对其认知水平变化更为敏感。由此可见MoCA对轻度认知功能障碍具有更高的敏感性,是一种高效、快速的认知功能损害筛查工具 [62] 。

虽然MoCA提供了一种快速的认知评估,特别是在神经心理成套测验不可行的情况下,提供了可接受的灵敏度,但受制于它的低阳性预测值和低诊断准确性 [63] 。若欲更精确检测特定的认知领域缺陷,神经心理成套测验表优于MoCA [64] 。

目前aSAH后认知功能损害的研究之间的结果差异大、无可比性,归因于临床上缺乏aSAH特异性评估量表。因此在使用现有的认知功能评估量表时尽量使用高灵敏度、高可信度、操作性强且重复性好的量表。

5. 认知功能损害的治疗方式

aSAH后认识功能损害的治疗应从发病到康复整个过程,目前已知的治疗方式有康复治疗和药物治疗。

5.1. 康复治疗

早期动员可在aSAH急性期中开展。Karic等人 [65] 进行了一项前瞻性研究比较了接受标准动员治疗和接受早期动员治疗aSAH患者的治疗效果,结果发现,早期动员不会增加并发症和其他不良事件的发生,早期康复使发生严重CVS的风险降低了30%。一项回顾性研究比较了早期和晚期动员的治疗效果,发现早期动员组的患者更早出院回家,出院时功能状态更好 [66] 。早期动员也可改善aSAH后认知功能损害,除了早期动员带来的认知益处外,关于aSAH急性期中认知康复益处的信息很少 [67] 。此外,还应考虑和研究何时开始早期认知康复。一旦通过神经认知测试确定了aSAH患者的特定认知功能损害,就应该立即开始做出认知康复的决策,过早或推迟认知康复可能会阻碍早期认知康复的结果 [68] 。

5.2. 高压氧治疗

康复治疗包括物理治疗、言语和语言治疗、认知康复治疗等。然而,这些疗法的疗效有限 [69] 。aSAH后的认知恢复主要发生在发病后第一个月内,一些aSAH患者在发病后的三个月内认知功能损害仍在恶化,但即使采用特定领域的干预措施,改善也微乎其微 [70] 。高压氧治疗(Hyperbaric oxygen therapy, HBOT)在几项临床研究中表明,即使在大脑急性损伤后数年,HBOT也有诱导神经可塑性的能力 [71] 。Hadanny等人 [72] 在临床试验中发现aSAH患者经过HBOT后信息处理速度显著提高,86%的aSAH后认知功能损害患者通过HBOT认知功能得到了临床显著改善,即使在aSAH中晚期,HBOT也能在所有认知领域得到显著改善。

5.3. 药物治疗

到目前为止,还没有针对aSAH后认知功能损害患者的特殊药物治疗,选择性钙通道阻滞剂(尼莫地平)仍然是治疗蛛网膜下腔出血的唯一循证选择,尽管益处有限。在认知功能中执行功能主要与单胺类神经递质系统有关,记忆主要与胆碱能神经递质系统相关 [73] 。aSAH可能会对其中一个神经递质系统造成损伤,导致单胺能或胆碱能缺陷 [74] 。Leijenaar等人 [75] 一项原理验证研究中发现哌甲酯(单胺能药物)耐受性良好,可改善aSAH患者的执行功能和瞬时记忆功能。加兰他敏(胆碱能药物)并没有改善记忆力或执行力,原因可能受到加兰他敏副作用的影响。

6. 总结与展望

aSAH治疗的进步意味着患者存活率上升;但aSAH幸存者群体承受着高患病率的精神异常和认知功能损害的负担,这严重影响康复、社会和身体独立以及重返工作岗位的能力。因此,对于aSAH后认知功能损害发生机制还需进一步研究,希望能研发出针对发病机制的靶向药物;此外还需要aSAH特异性评估量表,能早期诊断认知功能损害并早期进行康复治疗,尽管在aSAH急性期内存在公认的认知缺陷,但目前在急性情况下利用认知康复的数据是有限的。随着目前认知康复的趋势更多的在亚急性期或慢性期开始,有必要进一步研究在急性期开始认知康复及其对长期生活质量的影响。

NOTES

*通讯作者。

参考文献

[1] Feigin, V., Lawes, C., Bennett, D., et al. (2009) Worldwide Stroke Incidence and Early Case Fatality Reported in 56 Population-Based Studies: A Systematic Review. The Lancet Neurology, 8, 355-369.
https://doi.org/10.1016/S1474-4422(09)70025-0
[2] Van, G.J. and Rinkel, G. (2001) Subarachnoid Haemorrhage: Diagnosis, Causes and Management. Brain, 124, 249-278.
https://doi.org/10.1093/brain/124.2.249
[3] Virani, S.S., Alonso, A., Aparicio, H.J., et al. (2021) Heart Disease and Stroke Statistics—2021 Update: A Report from the American Heart Association. Circulation, 143, e254-e743.
https://doi.org/10.1161/CIR.0000000000000950
[4] Buunk, A.M., Spikman, J.M., Metzemaekers, J., et al. (2019) Return to Work after Subarachnoid Hemorrhage: The Influence of Cognitive Deficits. PLOS ONE, 14, e0220972.
https://doi.org/10.1371/journal.pone.0220972
[5] Turi, E.R., Conley, Y., Crago, E., et al. (2019) Psychosocial Comorbidities Related to Return to Work Rates Following Aneurysmal Subarachnoid Hemorrhage. Journal of Occupational Rehabilitation, 29, 205-211.
https://doi.org/10.1007/s10926-018-9780-z
[6] Lublinsky, S., Major, S., Kola, V., et al. (2019) Early Blood-Brain Barrier Dysfunction Predicts Neurological Outcome Following Aneurysmal Subarachnoid Hemorrhage. EBioMedicine, 43, 460-472.
https://doi.org/10.1016/j.ebiom.2019.04.054
[7] Geraghty, J.R., Davis, J.L. and Testai, F.D. (2019) Neuroinflammation and Microvascular Dysfunction after Experimental Subarachnoid Hemorrhage: Emerging Components of Early Brain Injury Related to Outcome. Neurocritical Care, 31, 373-389.
https://doi.org/10.1007/s12028-019-00710-x
[8] Savarraj, J., Parsha, K., Hergenroeder, G., Ahn, S., Chang, T.R., Kim, D.H. and Choi, H.A. (2018) Early Brain Injury Associated with Systemic Inflammation after Subarachnoid Hemorrhage. Neurocritical Care, 28, 203-211.
https://doi.org/10.1007/s12028-017-0471-y
[9] Jaja, B.N.R., Cusimano, M.D., Etminan, N, et al. (2013) Clinical Prediction Models for Aneurysmal Subarachnoid Hemorrhage: A Systematic Review. Neurocritical Care, 18, 143-153.
https://doi.org/10.1007/s12028-012-9792-z
[10] Fang, Y., Mei, S., Lu, J., et al. (2019) New Risk Score of the Early Period after Spontaneous Subarachnoid Hemorrhage: For the Prediction of Delayed Cerebral Ischemia. CNS Neuroence & Therapeutics, 25, 1173-1181.
https://doi.org/10.1111/cns.13202
[11] Fisher, C.M., Kistler, J.P. and Davis, J.M. (1980) Relation of Cerebral Vasospasm to Subarachnoid Hemorrhage Visualized by Computerized Tomographic Scanning. Neurosurgery, 6, 1-9.
https://doi.org/10.1227/00006123-198001000-00001
[12] Frontera, J.A., Claassen, J., Schmidt, J.M., et al. (2006) Prediction of Symptomatic Vasospasm after Subarachnoid Hemorrhage: The Modified Fisher Scale. Neurosurgery, 59, 21-27.
https://doi.org/10.1227/01.neu.0000243277.86222.6c
[13] Geraghty, J.R., Lara-Angulo, M.N., Spegar, M., et al. (2020) Severe Cognitive Impairment in Aneurysmal Subarachnoid Hemorrhage: Predictors and Relationship to Functional Outcome. Journal of Stroke and Cerebrovascular Diseases, 29, Article 105027.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105027
[14] 赵康丽, 李国锋, 李豪杰. 颅内动脉瘤性蛛网膜下腔出血后认知障碍的影响因素分析[J]. 航空航天医学杂志, 2021, 32(10): 1194-1196.
[15] Bonares, M.J., Egeto, P., de Oliveira Manoel, A.L., et al. (2016) Unruptured Intracranial Aneurysm Treatment Effects on Cognitive Function: A Meta-Analysis. Journal of Neurosurgery JNS, 124, 784-790.
https://doi.org/10.3171/2014.12.JNS141625
[16] Macdonald, R.L., Kassell, N.F., Mayer, S., et al. (2008) Clazosentan to Overcome Neurological Ischemia and Infarction Occurring after Subarachnoid Hemorrhage (CONSCIOUS-1): Randomized, Double-Blind, Placebo-Controlled Phase 2 Dose-Finding Trial. Stroke, 39, 3015-3021.
https://doi.org/10.1161/STROKEAHA.108.519942
[17] Vergouwen, M., Vermeulen, M., Gijn, J.V., et al. (2010) Definition of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies: Proposal of a Multidisciplinary Research Group. Stroke, 41, 2391-2395.
https://doi.org/10.1161/STROKEAHA.110.589275
[18] Suarez, J.I., Tarr, R.W. and Selman, W.R. (2006) Aneurysmal Subarachnoid Hemorrhage. The New England Journal of Medicine, 354, 387-396.
https://doi.org/10.1056/NEJMra052732
[19] Ahn, S.H., Savarraj, J.P., Pervez, M., et al. (2018) The Subarachnoid Hemorrhage Early Brain Edema Score Predicts Delayed Cerebral Ischemia and Clinical Outcomes. Neurosurgery, 83, 137-145.
https://doi.org/10.1093/neuros/nyx364
[20] Suzuki, H., Kanamaru, H., Kawakita, F., et al. (2021) Cerebrovascular Pathophysiology of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage. Histology and Histopathology, 36, 143-158.
https://doi.org/10.14670/HH-18-253
[21] Vergouwen, M.D., Vermeulen, M., van Gijn, J., Rinkel ,G.J., Wijdicks, E.F., Muizelaar, J.P., Mendelow, A.D., Juvela, S., Yonas, H., Terbrugge, K.G., Macdonald, R.L., Diringer, M.N., Broderick, J.P., Dreier, J.P. and Roos, Y.B. (2010) Definition of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies: Proposal of a Multidisciplinary Research Group. Stroke, 41, 2391-2395.
https://doi.org/10.1161/STROKEAHA.110.589275
[22] Stienen, M.N., Smoll, N.R., Weisshaupt, R., et al. (2014) Delayed Cerebral Ischemia Predicts Neurocognitive Impairment Following Aneurysmal Subarachnoid Hemorrhage. World Neurosurgery, 82, e599-e605.
https://doi.org/10.1016/j.wneu.2014.05.011
[23] Stienen, M.N., Germans, M.R., Zindel-Geisseler, O., et al. (2022) Longitudinal Neuropsychological Assessment after Aneurysmal Subarachnoid Hemorrhage and Its Relationship with Delayed Cerebral Ischemia: A Prospective Swiss Multicenter Study. Journal of Neurosurgery, 137, 1742-1750.
https://doi.org/10.3171/2022.2.JNS212595
[24] Shen, Y., Dong, Z.F., Pan, P., et al. (2018) Risk Factors for Mild Cognitive Impairment in Patients with Aneurysmal Subarachnoid Hemorrhage Treated with Endovascular Coiling. World Neurosurgery, 119, e527-e533.
https://doi.org/10.1016/j.wneu.2018.07.196
[25] Wong, G., Wong, R., Mok, V., et al. (2009) Clinical Study on Cognitive Dysfunction after Spontaneous Subarachnoid Haemorrhage: Patient Profiles and Relationship to Cholinergic Dysfunction. Acta Neurochirurgica, 151, 1601-1607.
https://doi.org/10.1007/s00701-009-0425-z
[26] Bakar, E.E. and Bakar, B. (2010) Neuropsychological Assessment of Adult Patients with Shunted Hydrocephalus. Journal of Korean Neurosurgical Society, 47, 191-198.
https://doi.org/10.3340/jkns.2010.47.3.191
[27] Hütter, B.-O. and Gilsbach, J.-M. (2017) Short-and Long-Term Neurobehavioral Effects of Lumbar Puncture and Shunting in Patients with Malabsorptive Hydrocephalus after Subarachnoid Haemorrhage: An Explorative Case Study. Journal of Clinical Neuroscience, 36, 88-93.
https://doi.org/10.1016/j.jocn.2016.10.021
[28] Di Russo, P., Di Carlo, D.T., Lutenberg, A., Morganti, R., Evins, A.I. and Perrini, P. (2020) Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgical Sciences, 64, 181-189.
https://doi.org/10.23736/S0390-5616.19.04641-1
[29] Inoue, T., Shimizu, H., Fujimura, M., et al. (2015) Risk Factors for Meningitis after Craniotomy in Patients with Subarachnoid Hemorrhage Due to Anterior Circulation Aneurysms Rupture. Clinical Neurology and Neurosurgery, 139, 302-306.
https://doi.org/10.1016/j.clineuro.2015.10.029
[30] Li, H., Pan, R., Wang, H., et al. (2013) Clipping versus Coiling for Ruptured Intracranial Aneurysms: A Systematic Review and Meta-Analysis. Stroke, 44, 29-37.
https://doi.org/10.1161/STROKEAHA.112.663559
[31] Molyneux, A., Kerr, R.,Yu, L.-Y., et al., International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group (2005) International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping versus Endovascular Coiling in 2143 Patients with Ruptured Intracranial Aneurysms: A Randomised Trial. ACC Current Journal Review, 14, 1267-1274.
https://doi.org/10.1016/j.accreview.2005.11.083
[32] Egeto, P., Macdonald, R.L., Ornstein T.J., et al. (2017) Neuropsychological Function after Endovascular and Neurosurgical Treatment of Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Journal of Neurosurgery, 128, 768-776.
https://doi.org/10.3171/2016.11.JNS162055
[33] 俞学斌, 金国良, 黄春敏, 等. 动脉瘤性蛛网膜下腔出血患者开颅夹闭术与介入栓塞术后认知功能的对比研究[J]. 临床神经外科杂志, 2020, 17(1): 86-89.
[34] Frazer, D., Ahuja, A., Watkins, L., et al. (2007) Coiling versus Clipping for the Treatment of Aneurysmal Subarachnoid Hemorrhage: A Longitudinal Investigation into Cognitive Outcome. Neurosurgery, 60, 434-442.
https://doi.org/10.1227/01.NEU.0000255335.72662.25
[35] 俞学斌, 金国良, 黄春敏, 等. 动脉瘤性蛛网膜下腔出血后发生认知障碍危险因素分析[J]. 浙江医学, 2019, 41(18): 4.
[36] Pradilla, G., Chaichana, K.L., Hoang, S., et al. (2010) Inflammation and Cerebral Vasospasm after Subarachnoid Hemorrhage. Neurosurgery Clinics of North America, 21, 365-379.
https://doi.org/10.1016/j.nec.2009.10.008
[37] Gallia, G.L. and Tamargo, R.J. (2006) Leukocyte-Endothelial Cell Interactions in Chronic Vasospasm after Subarachnoid Hemorrhage. Neurological Research, 28, 750-758.
https://doi.org/10.1179/016164106X152025
[38] Scheller, J., Chalaris, A., Schmidt-Arras, D., et al. (2011) The Pro-and Anti-Inflammatory Properties of the Cytokine Interleukin-6. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813, 878-888.
https://doi.org/10.1016/j.bbamcr.2011.01.034
[39] Chen, A., Oakley, A.E., Monteiro, M., et al. (2016) Multiplex Analyte Assays to Characterize Different Dementias: Brain Inflammatory Cytokines in Poststroke and Other Dementias. Neurobiology of Aging, 38, 56-67.
https://doi.org/10.1016/j.neurobiolaging.2015.10.021
[40] Kulesh, A., Drobakha, V., Kuklina, E., et al. (2018) Cytokine Response, Tract-Specific Fractional Anisotropy, and Brain Morphometry in Post-Stroke Cognitive Impairment. Journal of Stroke and Cerebrovascular Diseases, 27, 1752-1759.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.004
[41] Guo, J., Su, W., Fang, J., et al. (2018) Elevated CRP at Admission Predicts Post-Stroke Cognitive Impairment in Han Chinese Patients with Intracranial Arterial Stenosis. Neurological Research, 40, 292-296.
https://doi.org/10.1080/01616412.2018.1438224
[42] Li, J., Li, X.Y., Feng, D.F., et al. (2010) Biomarkers Associated with Diffuse Traumatic Axonal Injury: Exploring Pathogenesis, Early Diagnosis, and Prognosis. Journal of Trauma and Acute Care Surgery, 69, 1610-1618.
https://doi.org/10.1097/TA.0b013e3181f5a9ed
[43] Teunissen, C.E., Dijkstra, C. and Polman, C. (2005) Biological Markers in CSF and Blood for Axonal Degeneration in Multiple Sclerosis. The Lancet Neurology, 4, 32-41.
https://doi.org/10.1016/S1474-4422(04)00964-0
[44] Helbok, R., Schiefecker, A., Delazer, M., et al. (2015) Cerebral Tau Is Elevated after Aneurysmal Subarachnoid Haemorrhage and Associated with Brain Metabolic Distress and Poor Functional and Cognitive Long-Term Outcome. Journal of Neurology, Neurosurgery & Psychiatry, 86, 79-86.
https://doi.org/10.1136/jnnp-2013-307326
[45] Xiong, X.Y., Liu, L. and Yang, Q.W. (2016) Functions and Mechanisms of Microglia/Macrophages in Neuroinflammation and Neurogenesis after Stroke. Progress in Neurobiology, 142, 23-44.
https://doi.org/10.1016/j.pneurobio.2016.05.001
[46] Huang, X.P., Peng, J.H., Pang, J.W., et al. (2017) Peli1 Contributions in Microglial Activation, Neuroinflammatory Responses and Neurological Deficits Following Experimental Subarachnoid Hemorrhage. Frontiers in Molecular Neuroscience, 10, Article 398.
https://doi.org/10.3389/fnmol.2017.00398
[47] Cai, W., Liu, S., Hu, M., et al. (2018) Post-Stroke DHA Treatment Protects Against Acute Ischemic Brain Injury by Skewing Macrophage Polarity toward the M2 Phenotype. Translational Stroke Research, 9, 669-680.
https://doi.org/10.1007/s12975-018-0662-7
[48] Xu, W., Mo, J., Ocak, U., et al. (2020) Activation of Melanocortin 1 Receptor Attenuates Early Brain Injury in a Rat Model of Subarachnoid Hemorrhage Viathe Suppression of Neuroinflammation through AMPK/TBK1/NF-κB Pathway in Rats. Neurotherapeutics, 17, 294-308.
https://doi.org/10.1007/s13311-019-00772-x
[49] Tao, K., Cai, Q., Zhang, X., et al. (2020) Astrocytic Histone Deacetylase 2 Facilitates Delayed Depression and Memory Impairment after Subarachnoid Hemorrhage by Negatively Regulating Glutamate Transporter-1. Annals of Translational Medicine, 8, Article 691.
https://doi.org/10.21037/atm-20-4330
[50] Galluzzi, L., Pietrocola, F., Levine, B., et al. (2014) Metabolic Control of Autophagy. Cell, 159, 1263-1276.
https://doi.org/10.1016/j.cell.2014.11.006
[51] Wang, Z.Y., Zhou, L.Q., Zheng, X.T., et al. (2018) Effects of Dexamethasone on Autophagy and Apoptosis in Acute Spinal Cord Injury. NeuroReport, 29, 1084-1091.
https://doi.org/10.1097/WNR.0000000000001076
[52] Stankiewicz, T.R. and Linseman, D.A. (2014) Rho Family GTPases: Key Players in Neuronal Development, Neuronal Survival, and Neurodegeneration. Frontiers in Cellular Neuroscience, 8, Article 314.
https://doi.org/10.3389/fncel.2014.00314
[53] Lee, J.Y., He, Y., Sagher, O., et al. (2009) Activated Autophagy Pathway in Experimental Subarachnoid Hemorrhage. Brain Research, 1287, 126-135.
https://doi.org/10.1016/j.brainres.2009.06.028
[54] Wang, Z., Shi, X.Y., Yin, J., et al. (2012) Role of Autophagy in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Journal of Molecular Neuroscience, 46, 192-202.
https://doi.org/10.1007/s12031-011-9575-6
[55] Su, L., Ma, Y., Zhang, Z., et al. (2018) ROCK2 Regulates Autophagy in the Hippocampus of Rats after Subarachnoid Hemorrhage. NeuroReport, 29, 1571-1577.
https://doi.org/10.1097/WNR.0000000000001154
[56] Gomes, J.A., Selim, M., Cotleur, A., et al. (2014) Brain Iron Metabolism and Brain Injury Following Subarachnoid Hemorrhage: iCeFISH-Pilot (CSF Iron in SAH). Neurocritical Care, 21, 285-293.
https://doi.org/10.1007/s12028-014-9977-8
[57] Qin, Y., Li, G., Sun, Z., et al. (2019) Comparison of the Effects of Nimodipine and Deferoxamine on Brain Injury in Rat with Subarachnoid Hemorrhage. Behavioural Brain Research, 367, 194-200.
https://doi.org/10.1016/j.bbr.2019.04.004
[58] Nasreddine, Z.S., Phillips, N.A., Bédirian, V., et al. (2005) The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695-699.
https://doi.org/10.1111/j.1532-5415.2005.53221.x
[59] 孙跃岐, 吕春梅, 朱江华, 等. 蒙特利尔认知量表在健康体检老年人群中的应用[J]. 中国老年保健医学, 2018, 16(6): 12-13.
[60] Wong, G.K.C., Lam, S.W., Wong, A., et al. (2013) Comparison of Montreal Cognitive Assessment and Mini-Mental State Examination in Evaluating Cognitive Domain Deficit Following Aneurysmal Subarachnoid Haemorrhage. PLOS ONE, 8, e59946.
https://doi.org/10.1371/journal.pone.0059946
[61] 成明强, 游咏, 唐细容, 等. 比较MoCA和MMSE在卒中后认知功能筛查中的应用[J]. 现代生物医学进展, 2011, 11(24): 4883-4885.
[62] Fujiwara, Y., Suzuki, H., Yasunaga, M., et al. (2010) Brief Screening Tool for Mild Cognitive Impairment in Older Japanese: Validation of the Japanese Version of the Montreal Cognitive Assessment. Geriatrics & Gerontology International, 10, 225-232.
https://doi.org/10.1111/j.1447-0594.2010.00585.x
[63] Wong, G.K.C., Lam, S.W., Wong, A., et al. (2014) Early MoCA-Assessed Cognitive Impairment after Aneurysmal Subarachnoid Hemorrhage and Relationship to 1-Year Functional Outcome. Translational Stroke Research, 5, 286-291.
https://doi.org/10.1007/s12975-013-0284-z
[64] Schweizer, T.A., Al-Khindi, T. and Macdonald, R.L. (2012) Mini-Mental State Examination versus Montreal Cognitive Assessment: Rapid Assessment Tools for Cognitive and Functional Outcome after Aneurysmal Subarachnoid Hemorrhage. Journal of the Neurological Sciences, 316, 137-140.
https://doi.org/10.1016/j.jns.2012.01.003
[65] Karic, T., Røe, C., Nordenmark, T.H., et al. (2017) Effect of Early Mobilization and Rehabilitation on Complications in Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgery, 126, 518-526.
https://doi.org/10.3171/2015.12.JNS151744
[66] Okamura, M., Konishi, M., Sagara, A., et al. (2021) Impact of Early Mobilization on Discharge Disposition and Functional Status in Patients with Subarachnoid Hemorrhage: A Retrospective Cohort Study. Medicine, 100, e28171.
https://doi.org/10.1097/MD.0000000000028171
[67] Shukla, D.P. (2017) Outcome and Rehabilitation of Patients Following Aneurysmal Subarachnoid Haemorrhage. Journal of Neuroanaesthesiology and Critical Care, 4, S65-S75.
https://doi.org/10.4103/2348-0548.199952
[68] Milovanovic, A., Grujicic, D., Bogosavljevic, V., et al. (2017) Efficacy of Early Rehabilitation after Surgical Repair of Acute Aneurysmal Subarachnoid Hemorrhage: Outcomes after Verticalization on Days 2-5 versus Day 12 Post-Bleeding. Turkish Neurosurgery, 27, 867-873.
https://doi.org/10.5137/1019-5149.JTN.17711-16.1
[69] Hebert, D., Lindsay, M.P., McIntyre, A., et al. (2016) Canadian Stroke Best Practice Recommendations: Stroke Rehabilitation Practice Guidelines, Update 2015. International Journal of Stroke, 11, 459-484.
https://doi.org/10.1177/1747493016643553
[70] Langhorne, P., Bernhardt, J. and Kwakkel, G. (2011) Stroke Rehabilitation. The Lancet, 377, 1693-1702.
https://doi.org/10.1016/S0140-6736(11)60325-5
[71] Hadanny, A. and Efrati, S. (2016) The Efficacy and Safety of Hyperbaric Oxygen Therapy in Traumatic Brain Injury. Expert Review of Neurotherapeutics, 16, 359-360.
https://doi.org/10.1586/14737175.2016.1157018
[72] Hadanny, A., Rittblat, M., Bitterman, M., et al. (2020) Hyperbaric Oxygen Therapy Improves Neurocognitive Functions of Post-Stroke Patients—A Retrospective Analysis. Restorative Neurology and Neuroscience, 38, 93-107.
https://doi.org/10.3233/RNN-190959
[73] Robbins, T.W. and Arnsten, A.F.T. (2009) The Neuropsychopharmacology of Fronto-Executive Function: Monoaminergic Modulation. Annual Review of Neuroscience, 32, 267-287.
https://doi.org/10.1146/annurev.neuro.051508.135535
[74] Román, G.C. and Kalaria, R.N. (2006) Vascular Determinants of Cholinergic Deficits in Alzheimer Disease and Vascular Dementia. Neurobiology of Aging, 27, 1769-1785.
https://doi.org/10.1016/j.neurobiolaging.2005.10.004
[75] Leijenaar, J.F., Groeneveld, G.J., Klaassen, E.S., et al. (2020) Methylphenidate and Galantamine in Patients with Vascular Cognitive Impairment—The Proof-of-Principle Study STREAM-VCI. Alzheimers Research & Therapy, 12, Article No. 10.
https://doi.org/10.1186/s13195-019-0567-z