氨氧化微生物共代谢去除有机微污染物的研究进展
Research Progress in the Co-Metabolic Removal of Organic Micropollutants by Ammonia-Oxidizing Microorganisms
DOI: 10.12677/amb.2024.131006, PDF, HTML, XML, 下载: 33  浏览: 56 
作者: 朱名扬:华北电力大学环境科学与工程学院,北京
关键词: 有机微污染物氨氧化微生物氨单加氧酶羟基化Organic Micropollutants Ammonia-Oxidizing Microorganisms Monooxygenase Hydroxylation
摘要: 本文综述了有机微污染物在污水厂中的去除,其中氨氧化过程对有机微污染物的去除有着促进作用,进而引出氨氧化微生物的共代谢研究。通过分析共代谢过程中的功能性酶以及转化产物的结构分析,了解污染物的去除命运以及影响去除的一些关键性因素,为此类污染物去除提供新思路。结果表明,氨氧化共代谢是污染物生物去除的主要方式,三种氨氧化微生物都在其中起到重要作用。氨单加氧酶作为共代谢转化的功能性酶,使得污染物发生羟基化而被去除。污水厂中的某些参数对共代谢过程存在影响,如氨氮浓度、温度、SRT等,通过优化相关参数达到污染物去除效率最大化。
Abstract: This article provides an overview of the removal of organic micropollutants in wastewater treatment plants, with a focus on the promoting effect of the ammonia oxidation process on the removal of organic micropollutants, leading to the emergence of co-metabolic studies of ammonia- oxidizing microorganisms. By analyzing the functional enzymes involved in co-metabolism and the structural analysis of transformation products, the fate of pollutants during removal and some key factors influencing removal are understood, providing new insights for the removal of such pollutants. The results demonstrate that co-metabolism through ammonia oxidation is a primary pathway for biological removal of pollutants, and all three types of ammonia-oxidizing microorganisms play crucial roles in this process. Ammonia monooxygenase, as a functional enzyme in co-metabolic transformation, facilitates the hydroxylation of pollutants for their removal. Certain parameters in wastewater treatment plants have an impact on the co-metabolic process, such as ammonia nitrogen concentration, temperature, and solids retention time (SRT), and optimization of these parameters can maximize the efficiency of pollutant removal.
文章引用:朱名扬. 氨氧化微生物共代谢去除有机微污染物的研究进展[J]. 微生物前沿, 2024, 13(1): 58-64. https://doi.org/10.12677/amb.2024.131006

1. 引言

有机微污染物(Organic Micropollutants, OMPs)指以极低浓度存在于环境中的有机化合物,大多是由人类活动产生,包括药物、个人护理品、激素和工业化学品等 [1] 。近些年来,由于OMPs在水环境中的广泛存在,且自身对公共卫生安全有着极大的威胁,因此其去除过程受到人们的极大关注。OMPs对人体和环境有着许多负面影响,如慢性毒性,致畸性,耐药基因的产生等导致一系列危害。生态毒理学风险与危害评估研究已经表明,内分泌干扰物(EDCs)与女性乳腺癌和男性前列腺癌之间存在关联,同时对鱼类生理产生干扰,并在家养和野生动物中引起生殖功能障碍 [2] 。有研究发现双氯芬酸对鱼的肝脏、肾脏和鳃产生不同程度的影响 [3] 。由于其难降解性在动物和人体内不能被完全代谢,药物自身和产生的代谢物会随着粪便和尿液排出,并被污水厂收集 [4] ,因此关注OMPs在污水处理厂中去除命运至关重要。微污染物在环境中的去除非常困难,通常分为物理降解、化学降解和生物降解。生物降解由于其成本低、环境友好的特点,是污水处理厂采用的主要技术 [5] 。

OMPs在污水厂中主要存在两种生物转化机制:(i) 共代谢,是指在底物存在的情况下,OMPs被微生物转化而不促进生长;(ii) 初级代谢,是指OMPs作为微生物生长的碳源和/或氮源利用 [6] [7] [8] [9] 。由于OMPs存在于污水厂中浓度水平从ng L−1至μg L−1不等 [10] ,因此造成污染物转化大多是由于共代谢而非初级代谢。然而,污水厂并没有专门设计处理此类污染物的工序,造成污水厂中药物的处理效果不尽人意 [11] 。但有趣的是,研究人员观察到这些污染物在通过硝化系统处理后得到一定程度的去除,启发人们将污染物的去除与污水厂中大多存在的硝化过程联系起来,探究氮去除过程与OMPs去除的关联。结果发现与无硝化活性或低硝化活性相比,在硝化条件下可以更有效地去除药物 [12] 。为了研究硝化过程与药物降解的关系,在硝化活性较高的条件下,加入烯丙基硫脲(Allylthiourea, ATU)来抑制硝化作用,药物的去除大大降低 [7] [13] ,由此证明了硝化过程在药物去除中的重要作用。

本文总结论述了OMPs在硝化过程中的去除情况,以及研究硝化过程中的主要功能微生物对OMPs的生物转化能力和降解机制,阐述影响污染物降解途径的各类因素,为OMPs在硝化过程中的去除命运提供进一步的见解,期为污水厂处理此类污染物提供新思路。

2. 微污染物在硝化过程中的去除

活性污泥过程中的OMPs等有机微污染物的生物转化是通过代谢或共代谢机制发生的 [14] 。在初级代谢中,污染物被异养微生物吸收并转化为细胞生长的碳和能量来源。不过这种转化过程只有在反应热力学和动力学有利的情况下才能进行,目前只有异养菌证实了这一过程的进行。由于在环境和污水厂中,有机物的浓度很低,因此,OMPs的生物降解可能在能量上不利于微生物,需要更不同类型的酶来催化 [15] 。由此人们推测出这样一条转化路径,此类有机物的降解可能与其他反应有关,如氮、磷的降解。在铵存在的情况下,OMPs作为非生长底物被异养或自养生物转化。在共代谢过程中,生长底物与非生长底物浓度的比例是非常重要的,比值高有利于微生物抵御OMPs的毒性,且决定了是否又足够的还原能力来供给非生长底物的转化和自身的生长发育 [16] 。

在硝化环境中已经观察到几种有机物的共代谢转化。Fernandez等 [17] 评价了硝化、亚硝化和异养条件对高富集硝化活性污泥中几种药物生物转化的影响。布洛芬和萘普生等药物在硝化条件下进行了生物转化,而磺胺甲恶唑被存在的异养细菌所转化。Xu等 [18] 研究了阿替洛尔的生物降解与氨的氧化速率有关,表明AOB在富集的硝化污泥中具有共代谢作用。且在铵是否存在的条件下,对比降解产物,这两种情况下所生成的产物不相同,这可能归因于不同条件下微生物的群落组成不同。在富集AOB的群落中,能够生物转化EE2,但不转化17α-乙炔雌二醇;异养细菌能够矿化EE2,生物转化17α-乙炔雌二醇,并矿化由AOB产生的EE2衍生代谢物 [19] 。在之后的研究中,可能要根据不同的产物来找出主要的负责转化的微生物。

3. 氨氧化微生物对药物的去除

AOB为最早发现的氨氧化细菌,它是以铵为能量,CO2为碳源,O2作为电子受体,完成氨氧化过程。迄今为止,记录并分离出5个AOB属并归类于变形菌门。亚硝化单胞菌属(Nitrosomonas),亚硝化弧菌属(Nitrosovibrio),亚硝化叶菌属(Nitrosolobus)亚硝化螺菌属(Nitrosospira)属于β-Proteinbacteria;而γ-Proteobacteria有亚硝化球菌属(Nitrosococcus)包括Nitrosococcus oceaniNitrosococcus halophilus [20] [21] [22] [23] 。AOB广泛存在于各类环境中,如陆地和海洋,在极端环境中也发现它的存在,如pH为10的碱湖,pH为4的酸性土壤,以及南极土壤和温泉环境。在自然环境中存在最多的为NitrosomonasNitrosospira [24] 。在污水处理厂中,与氨氧化古菌(Ammonia Oxidizing Archaea, AOA)相比,高氨氮废水更有利于AOB的生长 [25] ,证明了AOB在污水厂中发挥出更大的作用。影响AOB丰度和群落的关键因素包括温度、pH值、氨浓度和SRT等 [20] 。

AOA是含有古菌AMO编码基因的一种原核微生物。AOA一般属于中温谱系,陆地谱系的多样性高于海洋谱系 [26] 。污水处理厂中,氨氧化剂一般以AOB为主,但在部分工业污水厂中古菌amoA的丰度更高 [27] 。与AOB相比,AOA对氨具有较高的亲和力,使得AOA能够存在于各种寡营养条件下,如缺氧条件、低氨氮浓度等 [28] 。古菌AMO的氨半饱和常数通常在nM水平,比细菌AMO (μM)低100倍 [29] 。污水厂中OMPs的浓度通常在ng/L水平,而氮浓度又相对较高,AOA在OMPs的转化过程中可能发挥了比AOB更重要的作用。

传统的硝化反应由氨氧化细菌、氨氧化古菌以及亚硝酸盐氧化菌完成,在2015年,发现了一种可以将铵一步氧化为硝酸盐的微生物,称为完全氨氧化菌(Complete Ammonia Oxidizers, Comammox) [30] [31] 。它广泛存在于各种环境中,包括地下水过滤系统 [32] 、废水处理过程 [33] 、咸水湖泊沉积物和农业土壤 [34] ,除了海洋环境 [31] 。与其他两种氨氧化菌相比,Comammox在底物利用方面拥有更强的适应性,其氨半饱和常数为0.026 μg NH3-N/L,低于AOA (1.6 μg NH3-N/L)和AOB (77 μg NH3-N/L) [31] 。关于Comammox在污染物转化过程中的作用知之甚少,由于其独特的AMO酶结构和完整的消化酶,对污染物的转化可能不同于传统的氨氧化菌,若要清楚分析三种氨氧微生物(Ammonia Oxidizing Microorganisms, AOMs)的转化作用,针对Comammox的共代谢转化研究不可或缺。

氨氧化细菌、氨氧化古菌以及新发现的完全氨氧化细菌都已证明了参与共代谢的过程。Han等 [35] 研究了三种微生物在微污染物中的作用,阿苏兰、芬塞米德、米安色林和雷尼替丁可被AOA和AOB所转化,更明显的是,一种苯并咪唑杀菌剂,只被CMX转化,可能是由于其独特的AMO酶的作用。人们由此推测负责硝化过程的酶在共代谢过程中是否都起到作用,这也是解释共代谢机制的重要环节。

4. 生物转化机制研究

大多研究证实AOMs诱导的共代谢是主要的降解机制,且含有的非特异性酶AMO可以降解多种脂肪族和芳香族的底物。从AMO基因的角度来看,amoA包含底物氧化的活性位点,而amoB和amoC中的一个可能参与将还原剂转移到活性位点 [36] 。在Wang的研究中发现,头孢氨苄的暴露对氨氧化速率和AMO的活性均有影响,加入头孢氨苄后amoA基因的表达水平上调 [8] 。铜(最有可能是二铜)中心被假设为AMO的催化位点,而位于铜中心附近的假设腔体用于与底物结合 [37] 。AMO对有机物的降解可能与氨氮的降解类似,不过两者是否存在对活性位点的竞争还有待讨论。

根据催化产物也可看出,AMO参与污染物的催化反应。Fernandez等 [17] 观察到硝化活性增强了布洛芬(Ibuprofen, IBP)和萘普生(Naproxen, NPX)的生物转化,降解产物2-OH-IBP的产生也支持了AMO酶在其中发挥的羟基化作用。Wu等 [38] 在富集的硝化污泥中,发现了关于双氯芬酸(Diclofenac, DCF)的9个转化产物,其中包括生物转化和非生物硝化转化。三种转化产物4-OH-DCF,5-OH-DCF和DCF-BA的形成表明羟基化可能是DCF的第一步反应,并推测出DCF转化发生的反应是羟基化、内酰胺形成和氧化,污染物的转化产物分析有利于明晰其在环境中去除命运。

5. 影响污染物去除的关键因素

5.1. 氨氮浓度

在共代谢的转化过程中,铵作为不可或缺的生长底物,其浓度对OMPs的转化发挥了重要的影响。当铵不存在的情况下,污染物的去除率仅为24.9%,与硝化活性存在时,去除率达到97.4% [39] 。这些结果都证明了共代谢的存在,若没有铵根存在,氨氧化微生物缺乏一个主要的生长基质来维持其自身的能量供应,同样,AMO酶缺乏一个底物来激发活性。Dawas等 [40] 观察布洛芬在不同初始氨氮浓度下的降解,IBP在一定时间内得到了完全去除,但是其生物转化的开始时间会发生延迟,直到所有的氨被消耗完全。得到IBP的生物转化速率会随着初始氨氮浓度的增长而降低,由此也引出OMPs是否与氨氮存在活性位点的竞争的思考。由此可得氨氮浓度对于OMPs的降解十分重要,但并非是越高越好,氨氮浓度与OMPs的浓度比例要在一定合适的范围内,这对污水厂处理此类废水有着指导意义。

5.2. 污水厂运行参数

此类污染物在污水厂中广泛存在,因此在污水厂中的去除至关重要。但各个污水厂的处理环节与运行参数不尽相同,可能造成了污水厂对某类污染物的去除效率更高,或者不同污水厂在生物转化能力方面的不同表现。因此要了解相关污水处理厂参数,确定各类参数对OMPs转化的影响,确定最有效的污染物去除条件,战略上减少污染物进入地表水和城市水循环系统。污水厂的运行参数包括温度、固体停留时间(SRT)、水力停留时间(HRT)、活性污泥群落的各类性质(如污泥沉降比、污泥龄和硝化活性等)等。

SRT是污水厂活性污泥处理系统处理的重要运行参数,大多数情况下可以增加SRT来提高污染物的去除效率,因为这样来形成更为多样的微生物群落,特别是对于一些生长较慢的降解异养菌有直接影响。Kimura等 [41] 设置了不同的SRT,分别为7天、15天和65天,观察到长时间的SRT (65天)的MBR明显优于短时间的SRT (15天),并检测到不同的SRT在消除酮洛芬和双氯芬酸时差距尤为明显。Petrie观察到当SRT从3天增加到10天时,EE2生物降解从70% ± 7%增加到94% ± 1%,但当SRT从10天增加到27天时,没有观察到改善 [42] 。

6. 结论

本文总结论述了OMPs在污水厂中的去除命运,提出硝化过程的存在可能促进污染物的降解的观点,判断氨氧化细菌在OMPs转化过程中所起到的重要作用,以及通过转化过程中发挥作用的功能性酶和产物结构分析来进一步详尽其降解路径,最后提出一些与OMPs降解有关的因素来达到污染物处理效率最大化。OMPs对人体和环境有着不同程度的危害,研究其去除命运有着一定的指导意义,且对于通过生物处理去除此类污染物在工程应用中也是可行的,拥有非常广阔的研究与应用前景。

参考文献

[1] Luo, Y., Guo, W., Ngo, H., Nghiem, L., Hai, F., Zhang, J., et al. (2014) A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Science of the Total Environment, 473-474, 619-641.
https://doi.org/10.1016/j.scitotenv.2013.12.065
[2] Adeel, M., Song, X., Wang, Y., Francis, D., Yang, Y., et al. (2017) Environmental Impact of Estrogens on Human, Animal and Plant Life: A Critical Review. Environment International, 99, 107-119.
https://doi.org/10.1016/j.envint.2016.12.010
[3] Vieno, N. and Sillanpaa, M. (2014) Fate of Diclofenac in Municipal Wastewater Treatment Plant—A Review. Environment International, 69, 28-39.
https://doi.org/10.1016/j.envint.2014.03.021
[4] Bilkova, Z., Mala, J. and Hrich, K. (2019) Fate and Behaviour of Veterinary Sulphonamides under Denitrifying Conditions. Science of the Total Environment, 695, Article ID: 133824.
https://doi.org/10.1016/j.scitotenv.2019.133824
[5] Grandclement, C., Seyssiecq, I., Piram, A., Wong, P., Vanot, G., Tiliacos, N., et al. (2017) From the Conventional Biological Wastewater Treatment to Hybrid Processes, the Evaluation of Organic Micropollutant Removal: A Review. Water Research, 111, 297-317.
https://doi.org/10.1016/j.watres.2017.01.005
[6] Quintana, J., Weiss, S. and Reemtsma, T. (2005) Pathway’s and Metabolites of Microbial Degradation of Selected Acidic Pharmaceutical and Their Occurrence in Municipal Wastewater Treated by a Membrane Bioreactor. Water Research, 39, 2654-2664.
https://doi.org/10.1016/j.watres.2005.04.068
[7] Kassotaki, E., Buttiglieri, G., Ferrando, L., Rodriguez, I. and Pijuan, M. (2016) Enhanced Sulfamethoxazole Degradation through Ammonia Oxidizing Bacteria Co-Metabolism and Fate of Transformation Products. Water Research, 94, 111-119.
https://doi.org/10.1016/j.watres.2016.02.022
[8] Wang, B., Ni, B., Yuan, Z. and Guo, J. (2019) Cometabolic Biodegradation of Cephalexin by Enriched Nitrifying Sludge: Process Characteristics, Gene Expression and Product Biotoxicity. Science of the Total Environment, 672, 275-282.
https://doi.org/10.1016/j.scitotenv.2019.03.473
[9] Iasur-Kruh, L., Hadar, Y. and Minz, D. (2011) Isolation and Bioaugmentation of an Estradiol-Degrading Bacterium and Its Integration into a Mature Biofilm. Applied and Environmental Microbiology, 77, 3734-3740.
https://doi.org/10.1128/AEM.00691-11
[10] Liu, H., Lam, J., Li, W., Yu, H. and Lam, P. (2017) Spatial Distribution and Removal Performance of Pharmaceuticals in Municipal Wastewater Treatment Plants in China. Science of the Total Environment, 586, 1162-1169.
https://doi.org/10.1016/j.scitotenv.2017.02.107
[11] Falas, P., Wick, A., Castronovo, S., Habermacher, J., Ternes, T. and Joss, A. (2016) Tracing the Limits of Organic Micropollutant Removal in Biological Wastewater Treatment. Water Research, 95, 240-249.
https://doi.org/10.1016/j.watres.2016.03.009
[12] Xu, Y., Yuan, Z. and Ni, B. (2016) Biotransformation of Pharmaceuticals by Ammonia Oxidizing Bacteria in Wastewater Treatment Processes. Science of the Total Environment, 566, 796-805.
https://doi.org/10.1016/j.scitotenv.2016.05.118
[13] Rattier, M., Reungoat, J., Keller, J. and Gernjak, W. (2014) Removal of Micropollutants during Tertiary Wastewater Treatment by Biofiltration: Role of Nitrifiers and Removal Mechanisms. Water Research, 54, 89-99.
https://doi.org/10.1016/j.watres.2014.01.030
[14] Tran, N.H., Urase, T., Ngo, H., Hu, J. and Ong, S. (2013) Insight into Metabolic and Cometabolic Activities of Autotrophic and Heterotrophic Microorganisms in the Biodegradation of Emerging Trace Organic Contaminants. Bioresource Technology, 146, 721-731.
https://doi.org/10.1016/j.biortech.2013.07.083
[15] Kolvenbach, B., Helbling, D., Kohler, H. and Corvini, P. (2014) Emerging Chemicals and the Evolution of Biodegradation Capacities and Pathways in Bacteria. Current Opinion in Biotechnology, 27, 8-14.
https://doi.org/10.1016/j.copbio.2013.08.017
[16] Kim, M., et al. (2020) Kinetics of Competitive Cometabolism under Aerobic Conditions. Water-Energy Nexus, 3, 62-70.
https://doi.org/10.1016/j.wen.2020.04.001
[17] Fernandez-Fontaina, E., Gomes, I., Aga, D., Omil, F., Lema, J. and Carballa, M. (2016) Biotransformation of Pharmaceuticals under Nitrification, Nitratation and Heterotrophic Conditions. Science of the Total Environment, 541, 1439-1447.
https://doi.org/10.1016/j.scitotenv.2015.10.010
[18] Xu, Y., Radjenovic, J., Yuan, Z. and Ni, B. (2017) Biodegradation of Atenolol by an Enriched Nitrifying Sludge: Products and Pathways. Chemical Engineering Journal, 312, 351-359.
https://doi.org/10.1016/j.cej.2016.11.153
[19] Khunjar, W., Mackintosh, S., Skotnicka, J., Baik, S., Aga, D. and Love, N. (2011) Elucidating the Relative Roles of Ammonia Oxidizing and Heterotrophic Bacteria during the Biotransformation of 17α-Ethinylestradiol and Trimethoprim. Environmental Science & Technology, 45, 3605-3612.
https://doi.org/10.1021/es1037035
[20] Soliman, M. and Eldyasti, A. (2018) Ammonia-Oxidizing Bacteria (AOB): Opportunities and Applications—A Review. Reviews in Environmental Science and Bio-Technology, 17, 285-321.
https://doi.org/10.1007/s11157-018-9463-4
[21] Stephen, J., et al. (1996) Molecular Diversity of Soil and Marine 16S RRNA Gene Sequences Related to Beta-Subgroup Ammonia-Oxidizing Bacteria. Applied & Environmental Microbiology, 62, 4147-4154.
https://doi.org/10.1128/aem.62.11.4147-4154.1996
[22] Andreas, P., Rath, G. and Koops, H.P. (1996) Phylogenetic Diversity within the Genus Nitrosomonas. Systematic & Applied Microbiology, 3, 344-351.
https://doi.org/10.1016/S0723-2020(96)80061-0
[23] Teske, A, Alm, E., Regan, J., et al. (1994) Evolutionary Relationships among Ammonia-and Nitrite-Oxidizing Bacteria. Journal of Bacteriology, 176, 6623-6630.
https://doi.org/10.1128/jb.176.21.6623-6630.1994
[24] Harms, G., Layton, A.C., et al. (2003) Real-Time PCR Quantification of Nitrifying Bacteria in a Municipal Wastewater Treatment Plant. Environmental Science & Technology, 37, 343-351.
https://doi.org/10.1021/es0257164
[25] Ye, L. and Zhang, T. (2011) Ammonia-Oxidizing Bacteria Dominates over Ammonia-Oxidizing Archaea in a Saline Nitrification Reactor under Low DO and High Nitrogen Loading. Biotechnology and Bioengineering, 108, 2544-2552.
https://doi.org/10.1002/bit.23211
[26] Alves, R., Minh, B., Urich, T., Von Haeseler, A. and Schleper, C. (2018) Unifying the Global Phylogeny and Environmental Distribution of Ammonia-Oxidising Archaea Based on AmoA Genes. Nature Communications, 9, Article No. 1517.
https://doi.org/10.1038/s41467-018-03861-1
[27] Limpiyakorn, T., Fuerhacker, M., Haberl, R., Chodanon, T., Srithep, P. and Sonthiphand, P. (2013) AmoA-Encoding Archaea in Wastewater Treatment Plants: A Review. Applied Microbiology and Biotechnology, 97, 1425-1439.
https://doi.org/10.1007/s00253-012-4650-7
[28] Ren, Y., Ngo, H., Guo, W., Wang, D., Peng, L., Ni, B., et al. (2020) New Perspectives on Microbial Communities and Biological Nitrogen Removal Processes in Wastewater Treatment Systems. Bioresource Technology, 297, Article ID: 122491.
https://doi.org/10.1016/j.biortech.2019.122491
[29] Martens, W., Berube, P., Urakawa, H., De La Torre, J., Stahl and D. (2009) Ammonia Oxidation Kinetics Determine Niche Separation of Nitrifying Archaea and Bacteria. Nature, 461, 976-979.
https://doi.org/10.1038/nature08465
[30] Van Kessel, A., Nielsen, P., Den Camp, H., Kartal, B., et al. (2015) Complete Nitrification by a Single Microorganism. Nature, 528, 555-562.
https://doi.org/10.1038/nature16459
[31] Daims, H., Lebedeva, E., Pjevac, P., Han, P., Herbold, C., Albertsen, M., et al. (2015) Complete Nitrification by Nitrospira Bacteria. Nature, 528, 504-512.
https://doi.org/10.1038/nature16461
[32] Fowler, S., Palomo, A., Dechesne, A., Mines, P., Smets, B., et al. (2018) Comammox Nitrospira Are Abundant Ammonia Oxidizers in Diverse Groundwater-Fed Rapid Sand Filter Communities. Environmental Microbiology, 20, 1002-1015.
https://doi.org/10.1111/1462-2920.14033
[33] Annavajhala, M., Kapoor, V., Santo, J. and Chandran, K. (2018) Comammox Functionality Identified in Diverse Engineered Biological Wastewater Treatment Systems. Environmental Science & Technology Letters, 5, 110-116.
https://doi.org/10.1021/acs.estlett.7b00577
[34] Orellana, L., Chee, J., Sanford, R., Loffler, F. and Konstantinidis, K. (2018) Year-Round Shotgun Metagenomes Reveal Stable Microbial Communities in Agricultural Soils and Novel Ammonia Oxidizers Responding to Fertilization. Applied and Environmental Microbiology, 84, e01646-17.
https://doi.org/10.1128/AEM.01646-17
[35] Han, P., Yu, Y., Zhou, L., Tian, Z., Li, Z., Hou, L., et al. (2019) Specific Micropollutant Biotransformation Pattern by the Comammox Bacterium Nitrospirainopinata. Environmental Science & Technology, 53, 8695-8705.
https://doi.org/10.1021/acs.est.9b01037
[36] Sauder, L., Albertsen, M., Engel, K., Schwarz, J., Nielsen, P., Wagner, M., et al. (2017) Cultivation and Characterization of Candidatus Nitrosocosmicus Exaquare, an Ammonia-Oxidizing Archaeon from a Municipal Wastewater Treatment System. The ISME Journal, 11, 1142-1157.
https://doi.org/10.1038/ismej.2016.192
[37] Miyaji, A., Miyoshi, T., Motokura, K. and Baba, T. (2015) Discrimination of the Prochiral Hydrogens at the C-2 Position of N-Alkanes by the Methane/Ammonia Monooxygenase Family Proteins. Organic & Biomolecular Chemistry, 13, 8261-8270.
https://doi.org/10.1039/C5OB00640F
[38] Wu, G., Geng, J., Li, S., Li, J., Fu, Y., Xu, K., et al. (2019) Abiotic and Biotic Processes of Diclofenac in Enriched Nitrifying Sludge: Kinetics, Transformation Products and Reactions. Science of the Total Environment, 683, 80-88.
https://doi.org/10.1016/j.scitotenv.2019.05.216
[39] Wang, B., Ni, B., Yuan, Z. and Guo, J. (2019) Insight into the Nitrification Kinetics and Microbial Response of an Enriched Nitrifying Sludge in the Biodegradation of Sulfadiazine. Environmental Pollution, 255, Article ID: 113160.
https://doi.org/10.1016/j.envpol.2019.113160
[40] Dawas, A., Gur, S., Lerman, S., Sabbah, I. and Dosoretz, C. (2014) Co-Metabolic Oxidation of Pharmaceutical Compounds by a Nitrifying Bacterial Enrichment. Bioresource Technology, 167, 336-342.
https://doi.org/10.1016/j.biortech.2014.06.003
[41] Kimura, K., Hara, H. and Watanabe, Y. (2007) Elimination of Selected Acidic Pharmaceuticals from Municipal Wastewater by an Activated Sludge System and Membrane Bioreactors. Environmental Science & Technology, 41, 3708-3714.
https://doi.org/10.1021/es061684z
[42] Petrie, B., Barden, R. and Kasprzyk, B. (2015) A Review on Emerging Contaminants in Wastewaters and the Environment: Current Knowledge, Understudied Areas and Recommendations for Future Monitoring. Water Research, 72, 3-27.
https://doi.org/10.1016/j.watres.2014.08.053