膝关节翻修手术中干骺端骨缺损的重建与管理
Reconstruction and Management of Metaphyseal Bone Defects in Revision Knee Arthroplasty
摘要: 随着社会的发展,中国人口逐渐呈现出老龄化的现象,人工关节置换术的患者数量也逐渐增多。人工关节置换手术是目前治疗骨关节炎等导致膝关节疼痛、活动受限等疾病的可靠治疗方案。然而,某些患者因各种原因需要进行膝关节翻修手术,常见原因包括感染、松动或骨折等。但是因其手术复杂性,导致其预后和临床效果不如初次置换。再翻修往往会导致不同程度的骨缺损,是否妥善处理骨缺损往往决定着翻修手术成败与否。这不仅考验着手术医师的经验,还将影响患者膝关节的功能及稳定性,因此使得膝关节干骺端骨缺损的处理,日渐引起临床医师的重视,并且目前没有绝对治疗骨缺损的方案。如今重建骨缺损的目标在于达到膝关节稳定、恢复患者活动、功能正常。根据骨缺损的位置和大小,目前有很多重建措施,例如骨水泥、骨移植(自体骨移植、同种异体骨移植、打压骨移植、结构性同种异体骨移植)、金属增强模块、干骺端固定物(金属钽锥或干骺端袖套)、定制假体等。每种方式有不同的优缺点,重建前应详细制定手术计划及选择合适的假体,减少假体松动,增强假体稳定性及生存率,提高患者临床满意度。
Abstract: With the development of society, China’s population is gradually aging, and the number of patients undergoing artificial joint replacement is also gradually increasing. Artificial joint replacement surgery is currently a reliable treatment option for treating osteoarthritis and other diseases that cause knee joint pain and limited movement. However, some patients require revision knee surgery for a variety of reasons, including infection, loosening, or fracture. However, due to the complexity of the operation, its prognosis and clinical effect are not as good as those of primary surgery. Revision often leads to varying degrees of bone defects, and whether the bone defects are properly handled often determines the success or failure of the revision surgery. This not only tests the experience of the surgeon, but also affects the function and stability of the patient’s knee joint. Therefore, the treatment of metaphyseal bone defects in the knee joint has increasingly attracted the attention of clinicians, and there is currently no absolute treatment plan for bone defects. Today, the goal of reconstructing bone defects is to stabilize the knee joint and restore patient activity and normal function. Depending on the location and size of the bone defect, there are currently many reconstructive measures, such as bone cement, bone grafting (autograft, allograft, impact bone graft, structural allograft), metal reinforcement modules, metaphyseal End fixation (metal tantalum cone or metaphyseal sleeve), custom prosthesis, etc. Each method has different advantages and disadvantages. Before reconstruction, a detailed surgical plan and appropriate prosthesis selection should be made to reduce prosthesis loosening, enhance prosthesis stability and survival rate, and improve patient clinical satisfaction.
文章引用:阿吾扎尔·阿布都艾尼, 曹力. 膝关节翻修手术中干骺端骨缺损的重建与管理[J]. 临床医学进展, 2024, 14(3): 2254-2261. https://doi.org/10.12677/acm.2024.143970

1. 引言

全膝人工关节置换术目前仍是治疗导致患者膝关节疼痛、活动及功能受限等疾病的终极治疗方式。初次置换患者数量的增加,使得合并并发症的患者数量随之增加,为患者带来身体、心理上的巨大负担。大多合并并发症的患者需要行人工关节翻修术来减少疼痛、恢复关节活动及功能。在膝关节翻修手术中,干骺端骨缺损通常影响全膝关节置换术(TKA)的假体选择及假体的稳定性,术前有20%的患者明确有骨缺损 [1] 。导致干骺端骨缺损是多因素导致的,其中包括骨坏死、感染、假体周围骨折、骨质溶解、假体不稳定、应力遮挡、假体松动导致的机械性磨损以及术中丢失等 [2] 。

膝关节翻修手术中要尽可能保留宿主骨,通过植入物来重建不可避免的骨缺损,恢复患者膝关节的稳定性及力线,达到良好的髌骨轨迹,获得稳定且结构正常的膝关节,改善患者的膝关节活动、功能及生活质量 [3] 。导致患者膝关节翻修手术的原因包括无菌性松动、假体周围感染、聚乙烯磨损、骨质溶解、假体功能障碍、假体脱位、假体周围骨折等 [4] 。进行膝关节翻修手术的患者术前应仔细完善体格检查并评估韧带功能,并结合影像学检查完善术前X光片及CT等,以判断患膝剩余骨量及骨质 [5] 。所有患者应尽量完善术前细菌培养,在翻修手术之前鉴定出主要感染微生物或排除感染等是可行的。但是延迟手术也会促进生物膜的进一步形成并对手术产生不利影响 [6] 。最终选择进行一期翻修还是二期翻修,乃至选择何种假体及重建材料取决于外科医生的经验、患者韧带的完整性、骨缺损的位置和程度等 [7] [8] 。

2. 分类

目前临床上有多种骨缺损分类系统用来描述用于明确患者骨缺损的位置及程度,并指导临床决策。其中包括多尔分类系统、兰德分类系统、巴加和格罗斯分类系统、安德森骨科研究所分类系统等 [9] [10] [11] 。骨缺损通常可分为包含性骨缺损和非包含性骨缺损。包含性骨缺损在骨质流失区域周围有完整的外周皮质,可以根据缺损部位的大小使用颗粒骨移植物或水泥和螺钉进行治疗,并具有良好的骨长入、恢复骨量及性价比高等特点,并具有良好的中期疗效 [7] [8] 。在非包容性缺损中,周围皮质边缘缺失,往往需要使用金属增强物、大块结构同种异体移植物或干骺端套筒或锥体进行重建 [3] [12] 。目前临床广泛使用安德森骨科研究所(AORI)分类系统,来评估骨缺损的严重程度进行分类。I型骨缺损是具有完整的干骺端,微小的骨缺损不影响假体的稳定性。此类缺损可以通过骨水泥或颗粒骨植骨来填充 [3] 。II型骨缺损分为累及一侧髁(IIA型)和两侧髁(IIB型),这类缺陷具有完整或部分完整的骨皮质边缘,骨水泥或植骨适用于较小的II型缺陷。然而,更严重的II型和III型干骺端骨缺损需要使用大块结构同种异体移植物、假体增强或干骺端套筒和锥体。III型骨缺损累及任一股骨髁的大部分,需要结构植骨、铰链膝或定制假体 [3] 。

3. 干骺端骨缺损的治疗

全膝关节翻修术的目标是恢复稳定的膝关节,并具有良好的下肢和关节力线水平。干骺端骨缺损会影响假体的植入和骨与假体表面界面的稳定性 [13] 。重建干骺端骨缺损的方式有很多例如自体骨移植、同种异体骨移植、骨水泥、结构植入物和金属钽锥等。无论采用何种技术,骨质流失会影响是否使用约束性假体达到关节力线对齐及稳定。对于较大的非包容性骨缺损,必须预先准备特殊的垫块(金属钽锥或干骺端袖套)等,且需事先考虑是否使用带长柄的假体和限制性假体(铰链假体) [14] 。尽量选择具有令人满意的膝关节稳定性所需的最小约束的植入物,以减少骨受损的植入物固定界面上的应力 [1] 。

目前临床上尚无骨缺损重建的最佳方法,骨缺损重建对于翻修手术的成功与否影响较大。因此根据骨缺损的部位、大小及周围组织的完整性等,较小的、包含性的缺损可以通过颗粒植骨、骨水泥、螺钉骨钉等处理。较大的干骺端缺损则需要假体增强、使用大块结构同种异体移植物或使用干骺端锥体或套筒 [7] [12] 。每种技术都有优点、缺点和结果,临床医师需根据具体情况仔细斟酌选择,这往往影响患者的预后及生活质量。

3.1. 骨水泥

骨水泥用于较小的、包容性的缺损,通常用于较轻的AORI I型或II的患者。对于骨缺损 < 5 mm的患者可以单纯使用骨水泥填充重建,并取得了良好的长期随访结果。当骨缺损 < 20 mm且影响任一平台的<50%时,骨水泥填充的长期结果良好 [13] 。对于较小的骨缺损,在骨缺损重建中,与其单独使用水泥相比,水泥加螺钉固定可使假体移位减少30%。骨水泥对于较轻的骨缺损患者是具有高性价比的治疗方式。但是骨水泥也有一些弊端,水泥不是生物结构,其具有较低的弹性和无法恢复丢失骨量。并且长期可能会影响骨骼和骨骼血液供应导致坏死 [15] [16] 。正因如此,不建议将此技术应用于大的未包含的骨缺损。Lotke [17] 等人单独使用骨水泥治疗的59名患者随访了7.1年后只有一个需要再翻修。

3.2. 骨移植

临床上,一般使用自体颗粒状松质骨或同种异体骨移植并进行压实来有效地治疗包含性骨缺损。一般不可用于非包容性骨缺损,因其无法提供一个稳定的支撑平台。目前临床也有使用网状结构联合骨移植来治疗非包容性骨缺损的方法,可以防止撞击过程中骨颗粒流出。骨颗粒应尽可能大(直径3~5毫米),以确保早期稳定性 [18] [19] 。与骨水泥相比,这项技术主要优点在于可恢复的骨量,宿主骨量的恢复对于未来有可能进行重建手术的患者有利。但是使用骨移植物还存在骨不连、畸形愈合、移植物吸收、移植物塌陷的风险,以及疾病传播的风险 [3] 。骨移植有很多种类型,例如打压骨移植、自体骨移植、同种异体骨移植和结构性大块同种异体骨移植。

3.2.1. 自体骨移植

自体骨移植是一种从患者自身非必需骨中获取拟移植的松质骨并移植到所需骨缺损部位产生成骨反应的措施 [20] 。巴特马兹 [21] 等人回顾性分析了288例初次关节置换术患者。根据是否采用自体骨移植分为两组,最后得出,使用自体骨移植组引流量低于未使用组。因此自体骨移植是一种性价比较高的重建方式。

3.2.2. 打压骨移植

打压骨移植是一种用于在骨科手术中重建骨缺损的外科技术,它是通过将骨移植材料冲击或压实入骨缺损处,以促进骨再生并增强关节稳定性 [22] ,特别是在全髋关节置换术(THA)和全膝关节置换术(TKA)等关节置换手术中。在某些情况下,可以使用螺钉等额外的固定技术来固定骨移植物并促进愈合过程中的稳定性。冲击骨移植通常用于存在严重骨质流失或缺陷的情况,因为它提供结构支撑并促进骨再生。它有助于恢复骨量、提高植入物稳定性并增强接受关节置换手术的患者的长期结果 [23] [24] 。Rudert [25] 等人,回顾性分析28名翻修手术的患者,平均随访27.7个月,其中五名患者需要重新翻修。两名患者因严重感染需要进行股骨远端截肢术。另有一名患者出现新的感染,接受了假体拆除和关节固定术的治疗。另外两例因胫骨或股骨假体无菌性松动而进行翻修。没有其他与种植体相关的并发症。这项研究表明,打压骨移植可以带来良好的中期疗效,并可用于干骺端端大的骨缺损。

3.2.3. 同种异体骨移植

同种异体骨移植是一种常见的骨移植方法,在翻修手术中也有广泛的应用。同种异体骨移植是指使用除个体以外的异体骨重建骨缺损。同种异体骨移植可以为患者提供大量的骨量,适用于大范围的骨缺损修复 [26] 。其来源广泛,可以从尸体或捐赠者中获得,而且生物力学性能与自体骨相似,可以提供良好的支撑和稳定性。但是同种异体骨移植存在免疫排斥反应的风险,可能导致移植失败。且异体骨的来源和质量难以保证,可能存在感染和疾病传播的风险 [27] 。

3.2.4. 异体骨结构植骨

结构性异体骨移植,通常用于胫骨或股骨大块骨缺损 [28] 。其中包括包含性或非包含性骨缺损,并能为患者提供稳定且持久的骨量恢复 [29] [30] 。但是如何根据患者骨缺损选择正确的结构性异体骨尤为重要,其可为韧带和肌腱提供稳定的附着点 [31] 。并且如果在股骨翻修手术中使用结构性同种异体移植物,最好配合延长杆一起使用 [32] 。伦敦皇家医院的一项前瞻性研究报道,使用结构同种异体移植物和延长杆联合重建严重骨缺损取得了良好的效果 [33] 。

4. 模块化金属增强块或楔块

模块化金属增强或砌块主要用于老年的AORI-II型或III型的骨缺损深度在5~20 mm的患者 [34] 。模块金属增强通常联合合适的假体一起使用,并可根据骨缺损的位置及大小选择不同厚度或形状的金属块或楔块 [35] 。模块化金属楔通常用于胫骨侧来增强胫骨托,在股骨侧通常使用金属块来增加假体的旋转并平衡伸直和屈曲间隙 [36] 。Brand [35] 等人对22个膝关节(20名患者)进行了至少两年的随访,平均随访时间为37个月。没有出现任何与其有关失败,也没有出现胫骨组件松动的情况。非渐进性射线可透线的发生率为27%。Patel等人对79例使用金属增强材料重建骨缺损的患者平均随访了7年,患者11年生存率为92%,并建议使用模块化增强装置治疗II型骨缺损 [37] 。但是也有研究表明该技术的缺陷,包括松动、边缘骨质磨损及溶解和放射性可透线 [38] 。也有其他研究者报道金属增强还可能导致组件分离,导致应力屏蔽和骨质流失增加 [37] 。

5. 干骺端锥体(Cone)和袖套(Sleeve)

干骺端锥体和袖套目前常用于重建翻修手术中股骨或胫骨的大型干骺端骨缺损。金属钽锥具有高生物相容性和孔隙率等特性,并有对成骨细胞活性的支架作用使骨骼能够生长,再者其具有高摩擦系数和耐腐蚀性,可为患者提供假体稳定性,减少松动和溶解 [39] [40] [41] [42] 。有报道称其表面成分可以减少细菌黏附 [43] 。Cone可以通过骨水泥或压入等方式与假体连接,但是骨水泥影响骨长入,导致翻修失败 [44] 。Sleeve与Cone具有相同的意义,但是Sleeve通常需与假体柄结合作为一个整体使用。Sleeve与假体的结合可以使用骨水泥或非骨水泥结合 [45] 。因其表面具有高微喷涂且具有高孔隙率,可以与周围组织结合促进骨长入,并提供长期的机械支撑和旋转稳定性 [46] 。Sleeve通过莫氏锥体接头与种植体连接,在无骨水泥状态下提供稳定性 [47] 。与其他重建方式对比,Cone和Sleeve在重建翻修手术严重骨缺损具有潜在优势,因其表面与骨组织直接接触促进骨长入,提供假体的稳定性,并且其可以减少疾病传播和骨质吸收等问题。目前也有很多学者证实了其临床疗效。

例如Alexander [48] 等人,报道了30例使用Sleeve重建胫骨干骺端骨缺损的AORI-II型或AORI-III型患者,并进行至少2年的随访,其中六名患者需要再次手术,但没有一例与假体有关。Meneghini [49] 等人对15例使用干骺端钽锥(Cone)的患者随访了34个月,所有患者均显示出良好的骨整合的证据,且未发现假体松动的证据。Long [50] 等人使用Cone重建了16例翻修手术中的骨缺损,平均随访31个月,有两例因感染复发,其余14例重建效果良好,并且都具有良好的短期效果。Kamath [51] 等人的研究也表示多孔钽锥是一种具有前景的治疗方式,并具有良好的临床效果和骨长入。Barnett [52] 等人回顾性分析了51名AORI-II型或III型患者,均使用Sleeve进行重建骨缺损,最终随访放射结果显示稳定的骨整合,未发现松动或溶解的迹象。

6. 结论

在翻修手术中,骨缺损的管理是至关重要的。通过综合考虑患者的情况选择不同的治疗方法。骨缺损管理的目标是实现稳定的骨愈合,恢复患者的生活质量。在骨缺损管理中,应根据骨缺损的大小、位置和形状选择合适的修复方法。常见的方法包括结构性异体骨移植、自体骨移植、金属增强模块和干骺端钽锥或袖套等来填补骨缺损。此外骨缺损的治疗还应考虑手术技术和后续的康复计划。手术技术的精确性和安全性对于骨缺损修复的成功至关重要,可以帮助患者恢复骨骼功能和预防并发症。总而言之,骨缺损管理在翻修手术中具有重要的意义,因此骨科医师应当不断创新和更新现有技术,制定个性化方案,实现重建膝关节的稳定及提高患者预后。

NOTES

*通讯作者。

参考文献

[1] Mancuso, F., Beltrame, A., Colombo, E., Miani, E. and Bassini, F. (2017) Management of Metaphyseal Bone Loss in Revision Knee Arthroplasty. Acta Biomedica, 88, 98-111.
[2] Haidukewych, G.J., Hanssen, A. and Jones, R.D. (2011) Metaphyseal Fixation in Revision Total Knee Arthroplasty: Indications and Techniques. Journal of the American Academy of Orthopaedic Surgeons, 19, 311-318.
https://doi.org/10.5435/00124635-201106000-00001
[3] Daines, B.K. and Dennis, D.A. (2013) Management of Bone Defects in Revision Total Knee Arthroplasty. Instructional Course Lectures, 62, 341-348.
[4] Dalury, D.F., Pomeroy, D.L., Gorab, R.S. and Adams, M.J. (2013) Why Are Total Knee Arthroplasties Being Revised? The Journal of Arthroplasty, 28, 120-121.
https://doi.org/10.1016/j.arth.2013.04.051
[5] Huff, T.W. and Sculco, T.P. (2007) Management of Bone Loss in Revision Total Knee Arthroplasty. The Journal of Arthroplasty, 22, 32-36.
https://doi.org/10.1016/j.arth.2007.05.022
[6] Argenson, J.N., et al. (2019) Hip and Knee Section, Treatment, Debridement and Retention of Implant: Proceedings of International Consensus on Orthopedic Infections. The Journal of Arthroplasty, 34, S399-S419.
[7] Dennis, D.A., Berry, D.J., Engh, G., et al. (2008) Revision Total Knee Arthroplasty. Journal of the American Academy of Orthopaedic Surgeons, 16, 442-454.
https://doi.org/10.5435/00124635-200808000-00003
[8] Hanna, S.A., Aston, W.J.S., De Roeck, N.J., Gough-Palmer, A. and Powles, D.P. (2011) Cementless Revision TKA with Bone Grafting of Osseous Defects Restores Bone Stock with a Low Revision Rate at 4 to 10 Years. Clinical Orthopaedics and Related Research®, 469, 3164-3171.
https://doi.org/10.1007/s11999-011-1938-3
[9] Clatworthy, M. and Gross, A. (2003) Management of Bony Defects in Revision Total Knee Replacement. In: The Adult Knee, Lippincott Williams & Wilkins, Philadelphia, 1455.
[10] Engh, G. (1997) Bone Defect Classification. In: Revision Total Knee Arthroplasty, Lippincott Williams & Wilkins, Baltimore, 63-120.
https://doi.org/10.1007/0-387-27085-X_6
[11] Engh, G.A. and Ammeen, D.J. (1999) Bone Loss with Revision Total Knee Arthroplasty: Defect Classification and Alternatives for Reconstruction. Instructional Course Lectures, 48, 167-175.
[12] Vasso, M., Beaufils, P., Cerciello, S. and Schiavone, P.A. (2014) Bone Loss Following Knee Arthroplasty: Potential Treatment Options. Archives of Orthopaedic and Trauma Surgery, 134, 543-553.
https://doi.org/10.1007/s00402-014-1941-8
[13] Fehring, T.K., Christie, M.J., Lavernia, C., Mason, J.B., McAuley, J.P., MacDonald, S.J., et al. (2008) Revision Total Knee Arthroplasty: Planning, Management, and Controversies. Instructional Course Lectures, 57, 341-363.
[14] Hockman, D.E., Ammeen, D. and Engh, G.A. (2005) Augments and Allografts in Revision Total Knee Arthroplasty: Usage and Outcome Using One Modular Revision Prosthesis. The Journal of Arthroplasty, 20, 35-41.
https://doi.org/10.1016/j.arth.2004.09.059
[15] Persson, B.M. and Wouters, H.W. (1976) Curettage and Acrylic Cementation in Surgery of Giant Cell Tumors of Bone. Clinical Orthopaedics and Related Research®, 120, 125-133.
https://doi.org/10.1097/00003086-197610000-00019
[16] Persson, B.M., Ekelund, L., Lovdahl, R. and Gunterberg, B. (1984) Favourable Results of Acrylic Cementation for Giant Cell Tumors. Acta Orthopaedica Scandinavica, 55, 209-214.
https://doi.org/10.3109/17453678408992339
[17] Lotke, P.A., Wong, R.Y. and Ecker, M.L. (1991) The Use of Methylmethacrylate in Primary Total Knee Replacements with Large Tibial Defects. Clinical Orthopaedics and Related Research®, 270, 288-294.
https://doi.org/10.1097/00003086-199109000-00038
[18] Eldridge, J., Hubble, M., Nelson, K., Smith, E. and Learmonth, I. (1997) The Effect of Bone Chip Size on Initial Stability Following Femoral Impaction Grafting. The Journal of Bone and Joint Surgery. British Volume, 79, S364.
[19] Bolder, S.B., Schreurs, B.W., Verdonschot, N., Van Unen, J.M., Gardeniers, J.W. and Slooff, T.J. (2003) Particle Size of Bone Graft and Method of Impaction Affect Initial Stability of Cemented Cups: Human Cadaveric and Synthetic Pelvic Specimen Studies. Acta Orthopaedica Scandinavica, 74, 652-657.
https://doi.org/10.1080/00016470310018144
[20] Van Loon, C.J., De Waal Malefijt, M.C., Buma, P., et al. (2000) Autologous Morsellised Bone Grafting Restores Uncontained Femoral Bone Defects in Knee Arthroplasty. An in Vivo Study in Horses. The Journal of Bone and Joint Surgery. British Volume, 82, 436-444.
https://doi.org/10.1302/0301-620X.82B3.9491
[21] Batmaz, A.G., Kayaalp, M.E., Oto, O. and Bulbul, A.M. (2016) Sealing of Femoral Tunnel with Autologous Bone Graft Decreases Blood Loss. Acta Chirurgiae Orthopaedicae et Traumatologiae Čechoslovaca, 83, 348-350.
https://doi.org/10.55095/achot2016/055
[22] Toms, A.D., Barker, R.L., Jones, R.S. and Kuiper, J.H. (2004) Impaction Bone-Grafting in Revision Joint Replacement Surgery. The Journal of Bone and Joint Surgery. American Volume, 86, 2050-2060.
https://doi.org/10.2106/00004623-200409000-00028
[23] Lonner, J.H., Lotke, P.A., Kim, J. and Nelson, C. (2002) Impaction Grafting and Wire Mesh for Uncontained Defects in Revision Knee Arthroplasty. Clinical Orthopaedics and Related Research®, 404, 145-151.
https://doi.org/10.1097/00003086-200211000-00026
[24] Lotke, P.A., Carolan, G.F. and Puri, N. (2006) Technique for Impaction Bone Grafting of Large Bone Defects in Revision Total Knee Arthroplasty. The Journal of Arthroplasty, 21, 57-60.
https://doi.org/10.1016/j.arth.2006.01.019
[25] Rudert, M., Holzapfel, B.M., Von Rottkay, E., Holzapfel, D.E. and Noeth, U. (2015) Impaction Bone Grafting for the Reconstruction of Large Bone Defects in Revision Knee Arthroplasty. Operative Orthopädie und Traumatologie, 27, 35-46.
https://doi.org/10.1007/s00064-014-0330-3
[26] Calvo, R., Figueroa, D., Díaz-Ledezma, C., Vaisman, A. and Figueroa, F. (2011) Bone Allografts and the Functions of Bone Banks. Revista Médica de Chile, 139, 660-666.
https://doi.org/10.4067/S0034-98872011000500015
[27] Franke, K.F., Nusem, I., Gamboa, G. and Morgan, D.A. (2013) Outcome of Revision Total Knee Arthroplasty with Bone Allograft in 30 Cases. Acta Orthopaedica Belgica, 79, 427-434.
[28] Backstein, D., Safir, O. and Gross, A. (2006) Management of Bone Loss: Structural Grafts in Revision Total Knee Arthroplasty. Clinical Orthopaedics and Related Research®, 446, 104-112.
https://doi.org/10.1097/01.blo.0000214426.52206.2c
[29] Bauman, R.D., Lewallen, D.G. and Hanssen, A.D. (2009) Limitations of Structural Allograft in Revision Total Knee Arthroplasty. Clinical Orthopaedics and Related Research®, 467, 818-824.
https://doi.org/10.1007/s11999-008-0679-4
[30] Beckmann, N.A., Mueller, S., Gondan, M., Jaeger, S., Reiner, T. and Bitsch, R.G. (2015) Treatment of Severe Bone Defects during Revision Total Knee Arthroplasty with Structural Allografts and Porous Metal Cones—A Systematic Review. The Journal of Arthroplasty, 30, 249-253.
https://doi.org/10.1016/j.arth.2014.09.016
[31] Dennis, D.A. and Little, L.R. (2005) The Structural Allograft Composite in Revision Total Knee Arthroplasty. Orthopedics, 28, 1005-1007.
https://doi.org/10.3928/0147-7447-20050901-45
[32] Completo, A., Simões, J.A. and Fonseca, F. (2009) Revision Total Knee Arthroplasty: The Influence of Femoral Stems in Load Sharing and Stability. Knee, 16, 275-279.
https://doi.org/10.1016/j.knee.2008.12.008
[33] Lyall, H.S., Sanghrajka, A. and Scott, G. (2009) Severe Tibial Bone Loss in Revision Total Knee Replacement Managed with Structural Femoral Head Allograft: A Prospective Case Series from the Royal London Hospital. Knee, 16, 326-331.
https://doi.org/10.1016/j.knee.2009.02.007
[34] Huten, D. (2013) Femorotibial Bone Loss during Revision Total Knee Arthroplasty. Orthopaedics & Traumatology: Surgery & Research, 99, S22-S33.
https://doi.org/10.1016/j.otsr.2012.11.009
[35] Brand, M.G., Daley, R.J., Ewald, F.C. and Scott, R.D. (1989) Tibial Tray Augmentation with Modular Metal Wedges for Tibial Bone Stock Deficiency. Clinical Orthopaedics and Related Research®, 248, 71-79.
https://doi.org/10.1097/00003086-198911000-00013
[36] Radnay, C.S. and Scuderi, G.R. (2006) Management of Bone Loss: Augments, Cones, Offset Stems. Clinical Orthopaedics and Related Research®, 446, 83-92.
https://doi.org/10.1097/01.blo.0000214437.57151.41
[37] Patel, J.V., Masonis, J.L., Guerin, J., Bourne, R.B. and Rorabeck, C.H. (2004) The Fate of Augments to Treat Type-2 Bone Defects in Revision Knee Arthroplasty. The Journal of Bone and Joint Surgery, 86, 195-199.
https://doi.org/10.1302/0301-620X.86B2.13564
[38] Lei, P.F., Hu, R.Y. and Hu, Y.H. (2019) Bone Defects in Revision Total Knee Arthroplasty and Management. Orthopaedic Surgery, 11, 15-24.
https://doi.org/10.1111/os.12425
[39] Rajgopal, A., Kumar, S. and Aggarwal, K. (2021) Midterm Outcomes of Tantalum Metal Cones for Severe Bone Loss in Complex Primary and Revision Total Knee Arthroplasty. Arthroplasty Today, 7, 76-83.
https://doi.org/10.1016/j.artd.2020.12.004
[40] Howard, J.L., Kudera, J., Lewallen, D.G. and Hanssen, A.D. (2011) Early Results of the Use of Tantalum Femoral Cones for Revision Total Knee Arthroplasty. The Journal of Bone and joint Surgery. American Volume, 93, 478-484.
https://doi.org/10.2106/JBJS.I.01322
[41] Lachiewicz, P.F., Bolognesi, M.P., Henderson, R.A., Soileau, E.S. and Vail, T.P. (2012) Can Tantalum Cones Provide Fixation in Complex Revision Knee Arthroplasty? Clinical Orthopaedics and Related Research®, 470, 199-204.
https://doi.org/10.1007/s11999-011-1888-9
[42] Gebauer, M., Gehrke, T. and Jakobs, O. (2015) The Use of Tantalum Cones for Reconstruction of Bone Defects in Revision Total Knee Arthroplasty. Operative Orthopädie und Traumatologie, 27, 17-23.
https://doi.org/10.1007/s00064-014-0332-1
[43] Schildhauer, T.A., Robie, B., Muhr, G. and Köller, M. (2006) Bacterial Adherence to Tantalum versus Commonly Used Orthopedic Metallic Implant Materials. Journal of Orthopaedic Trauma, 20, 476-484.
https://doi.org/10.1097/00005131-200608000-00005
[44] Sentürk, U. and Perka, C. (2018) Knie-TEP-Verankerung bei Revision und schlechten Knochenverhältnissen. Knochen, Zement, Schaft, Sleeve, Konus? Zeitschrift für Orthopädie und Unfallchirurgie, 156, 711-717.
https://doi.org/10.1055/a-0630-2802
[45] Martin, J.R., Watters, T.S., Levy, D.L., Jennings, J.M. and Dennis, D.A. (2016) Removing a Well-Fxed Femoral Sleeve during Revision Total Knee Arthroplasty. Arthroplasty Today, 2, 171-175.
https://doi.org/10.1016/j.artd.2016.05.005
[46] Jiang, C. and Qian, W. (2015) Results of Sleeves in Revision Total Knee Arthroplasty: An Editorial Comment on Recently Published in the Journal of Arthroplasty. Annals of Translational Medicine, 3, 317.
[47] Marongiu, G., Capone, A., Verona, M., Piovan, G., Zorzi, C., Kendoff, D. and Bandino, M. (2023) The Management of Bone Defects in Revision Knee Arthroplasty: The Role of Porous Metal Cones and 3D-Printed Cones. Prosthesis, 5, Article No. 1171.
https://doi.org/10.3390/prosthesis5040082
[48] Alexander, G.E., Bernasek, T.L., Crank, R.L. and Haidukewych, G.J. (2013) Cementless Metaphyseal Sleeves Used for Large Tibial Defects in Revision Total Knee Arthroplasty. The Journal of Arthroplasty, 28, 604-607.
https://doi.org/10.1016/j.arth.2012.08.006
[49] Meneghini, R.M., Lewallen, D.G. and Hanssen, A.D. (2008) Use of Porous Tantalum Metaphyseal Cones for Severe Tibial Bone Loss during Revision Total Knee Replacement. The Journal of Bone and Joint Surgery. American Volume, 90, 78-84.
https://doi.org/10.2106/JBJS.F.01495
[50] Long, W.J. and Scuderi, G.R. (2009) Porous Tantalum Cones for Large Metaphyseal Tibial Defects in Revision Total Knee Arthroplasty: A Minimum 2-Year Follow-Up. The Journal of Arthroplasty, 24, 1086-1092.
https://doi.org/10.1016/j.arth.2008.08.011
[51] Kamath, A.F., Lewallen, D.G. and Hanssen, A.D. (2015) Porous Tantalum Metaphyseal Cones for Severe Tibial Bone Loss in Revision Knee Arthroplasty: A Five to Nine-Year Follow-Up. The Journal of Bone and Joint Surgery. American Volume, 97, 216-223.
https://doi.org/10.2106/JBJS.N.00540
[52] Barnett, S.L., Mayer, R.R., Gondusky, J.S., Choi, L., Patel, J.J. and Gorab, R.S. (2014) Use of Stepped Porous Titanium Metaphyseal Sleeves for Tibial Defects in Revision Total Knee Arthroplasty: Short Term Results. The Journal of Arthroplasty, 29, 1219-1224.
https://doi.org/10.1016/j.arth.2013.12.026